Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

Article 
ADS 
MathSciNet 

Google Scholar
 

Abbott, B. P. et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 116, 221101 (2016); erratum 121, 129902 (2018).

Article 
ADS 

Google Scholar
 

Abbott, R. et al. Tests of general relativity with GWTC-3. Phys. Rev. D 112, 084080 (2025).

Article 
ADS 

Google Scholar
 

Abbott, B. P. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88 (2017).

Article 
ADS 

Google Scholar
 

Abbott, B. P. et al. GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018).

Article 
ADS 

Google Scholar
 

Abbott, R. et al. Population of merging compact binaries inferred using gravitational waves through GWTC-3. Phys. Rev. X 13, 011048 (2023).


Google Scholar
 

Isi, M., Giesler, M., Farr, W. M., Scheel, M. A. & Teukolsky, S. A. Testing the no-hair theorem with GW150914. Phys. Rev. Lett. 123, 111102 (2019).

Article 
ADS 

Google Scholar
 

Isi, M., Farr, W. M., Giesler, M., Scheel, M. A. & Teukolsky, S. A. Testing the black-hole area law with GW150914. Phys. Rev. Lett. 127, 011103 (2021).

Article 
ADS 

Google Scholar
 

Cardoso, V., Franzin, E. & Pani, P. Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 116, 171101 (2016) ; erratum 117, 089902 (2016).

Article 
ADS 

Google Scholar
 

Teukolsky, S. A. Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys. J. 185, 635–647 (1973).

Article 
ADS 

Google Scholar
 

Berti, E., Cardoso, J., Cardoso, V. & Cavaglia, M. Matched-filtering and parameter estimation of ringdown waveforms. Phys. Rev. D 76, 104044 (2007).

Article 
ADS 

Google Scholar
 

Dreyer, O. et al. Black hole spectroscopy: testing general relativity through gravitational wave observations. Class. Quantum Grav. 21, 787–804 (2004).

Article 
ADS 

Google Scholar
 

Christensen, N. & Meyer, R. Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis. Phys. Rev. D 58, 082001 (1998).

Article 
ADS 

Google Scholar
 

Sharma, S. Markov chain Monte Carlo methods for Bayesian data analysis in astronomy. Ann. Rev. Astron. Astrophys. 55, 213–259 (2017).

Article 
ADS 

Google Scholar
 

Skilling, J. Nested sampling. AIP Conf. Proc. 735, 395 (2004).

Article 
ADS 
MathSciNet 

Google Scholar
 

Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859 (2006).

Article 
MathSciNet 

Google Scholar
 

Abac, A. et al. The science of the Einstein Telescope. Preprint at http://arxiv.org/abs/2503.12263 (2025).

Hu, Q. & Veitch, J. Costs of Bayesian parameter estimation in third-generation gravitational wave detectors: an assessment of current acceleration methods. Phys. Rev. D 112, 084039 (2025).

Article 
ADS 

Google Scholar
 

Reitze, D. et al. Cosmic Explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull. Am. Astron. Soc. 51, 035 (2019).


Google Scholar
 

Reitze, D. et al. The US program in ground-based gravitational wave science: contribution from the LIGO laboratory. Bull. Am. Astron. Soc. 51, 141 (2019).


Google Scholar
 

Punturo, M. et al. The Einstein Telescope: a third-generation gravitational wave observatory. Class. Quantum Grav. 27, 194002 (2010).

Article 
ADS 

Google Scholar
 

Hild, S. et al. Sensitivity studies for third-generation gravitational wave observatories. Class. Quantum Grav. 28, 094013 (2011).

Article 
ADS 

Google Scholar
 

Amaro-Seoane, P. et al. Laser interferometer space antenna. Preprint at http://arxiv.org/abs/1702.00786 (2017).

Hu, W.-R. & Wu, Y.-L. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl Sci. Rev. 4, 685–686 (2017).

Article 

Google Scholar
 

Luo, J. et al. TianQin: a space-borne gravitational wave detector. Class. Quantum Grav. 33, 035010 (2016).

Article 
ADS 

Google Scholar
 

Bhagwat, S., Pacilio, C., Barausse, E. & Pani, P. Landscape of massive black-hole spectroscopy with LISA and the Einstein Telescope. Phys. Rev. D 105, 124063 (2022).

Article 
ADS 

Google Scholar
 

Bhagwat, S., Pacilio, C., Pani, P. & Mapelli, M. Landscape of stellar-mass black-hole spectroscopy with third-generation gravitational-wave detectors. Phys. Rev. D 108, 043019 (2023).

Article 
ADS 

Google Scholar
 

Pitte, C., Baghi, Q., Besançon, M. & Petiteau, A. Exploring tests of the no-hair theorem with LISA. Phys. Rev. D 110, 104003 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Berti, E., Cardoso, V. & Starinets, A. O. Quasinormal modes of black holes and black branes. Class. Quantum Grav. 26, 163001 (2009).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bhagwat, S., Forteza, X. J., Pani, P. & Ferrari, V. Ringdown overtones, black hole spectroscopy, and no-hair theorem tests. Phys. Rev. D 101, 044033 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Jaranowski, P., Krolak, A. & Schutz, B. F. Data analysis of gravitational-wave signals from spinning neutron stars. 1. The signal and its detection. Phys. Rev. D 58, 063001 (1998).

Article 
ADS 

Google Scholar
 

Wang, H.-T., Yim, G., Chen, X. & Shao, L. Gravitational wave ringdown analysis using the F-statistic. Astrophys. J. 974, 230 (2024).

Article 
ADS 

Google Scholar
 

Wang, H.-T., Wang, Z., Dong, Y., Yim, G. & Shao, L. Reanalyzing the ringdown signal of GW150914 using the F-statistic method. Phys. Rev. D 111, 064037 (2025).

Article 
ADS 
MathSciNet 

Google Scholar
 

Prix, R. Bayesian QNM search on GW150914. LIGO Document T1500618-v4 (LIGO, 2016); https://dcc.ligo.org/LIGO-T1500618/public

Isi, M. & Farr, W. M. Analyzing black-hole ringdowns. Preprint at http://arxiv.org/abs/2107.05609 (2021).

Prix, R. & Krishnan, B. Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics. Class. Quantum Grav. 26, 204013 (2009).

Article 
ADS 

Google Scholar
 

Ashok, A., Covas, P. B., Prix, R. & Papa, M. A. Bayesian F-statistic-based parameter estimation of continuous gravitational waves from known pulsars. Phys. Rev. D 109, 104002 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Gabbard, H., Messenger, C., Heng, I. S., Tonolini, F. & Murray, R. Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy. Nat. Phys. 18, 112–117 (2022).

Article 

Google Scholar
 

Dax, M. et al. Real-time gravitational wave science with neural posterior estimation. Phys. Rev. Lett. 127, 241103 (2021).

Article 
ADS 

Google Scholar
 

Dax, M. et al. Neural importance sampling for rapid and reliable gravitational-wave inference. Phys. Rev. Lett. 130, 171403 (2023).

Article 
ADS 

Google Scholar
 

Pacilio, C., Bhagwat, S. & Cotesta, R. Simulation-based inference of black hole ringdowns in the time domain. Phys. Rev. D 110, 083010 (2024).

Article 
ADS 

Google Scholar
 

Robert, C. P. & Casella, G. Monte Carlo Statistical Methods (Springer, 2004).

Boyle, M. et al. The SXS Collaboration catalog of binary black hole simulations. Class. Quantum Grav. 36, 195006 (2019).

Article 
ADS 

Google Scholar
 

Higson, E., Handley, W., Hobson, M. & Lasenby, A. Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation. Stat. Comput. 29, 891 (2019).

Article 
MathSciNet 

Google Scholar
 

Ashton, G. et al. Bilby: a user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Suppl. Ser. 241, 27 (2019).

Article 
ADS 

Google Scholar
 

Giesler, M., Isi, M., Scheel, M. A. & Teukolsky, S. Black hole ringdown: the importance of overtones. Phys. Rev. X 9, 041060 (2019).


Google Scholar
 

Peyré, G. & Cuturi, M. Computational optimal transport: with applications to data science. Found. Trends Mach. Learn. 11, 355–607 (2019).

Article 

Google Scholar
 

Wang, Y., Shang, Y. & Babak, S. EMRI data analysis with a phenomenological waveform. Phys. Rev. D 86, 104050 (2012).

Article 
ADS 

Google Scholar
 

Hu, Q. & Veitch, J. Rapid premerger localization of binary neutron stars in third-generation gravitational-wave detectors. Astrophys. J. Lett. 958, L43 (2023).

Article 
ADS 

Google Scholar
 

Berti, E. & Klein, A. Mixing of spherical and spheroidal modes in perturbed Kerr black holes. Phys. Rev. D 90, 064012 (2014).

Article 
ADS 

Google Scholar
 

Finn, L. S. Detection, measurement and gravitational radiation. Phys. Rev. D 46, 5236–5249 (1992).

Article 
ADS 

Google Scholar
 

Loredo, T. J. & Wolpert, R. L. Bayesian inference: more than Bayes’s theorem. Front. Astron. Space Sci. 11, 1326926 (2024).

Article 
ADS 

Google Scholar
 

Thrane, E. & Talbot, C. An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models. Publ. Astron. Soc. Aust. 36, e010 (2019); erratum 37, e036 (2020).

Article 
ADS 

Google Scholar
 

Tokdar, S. T. & Kass, R. E. Importance sampling: a review. Wiley Interdiscip. Rev.: Comput. Stat. 2, 54–60 (2010).

Article 

Google Scholar
Â