He, C. et al. Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021).

Article 
CAS 

Google Scholar
 

Wang, M. R. et al. A triple increase in global river basins with water scarcity due to future pollution. Nat. Commun. 15, 880 (2024).

Article 
CAS 

Google Scholar
 

Liu, J. G. et al. Water scarcity assessments in the past, present, and future. Earth’s Future 5, 545–559 (2017).

Article 

Google Scholar
 

Schmidt-Traub, G., Kroll, C., Teksoz, K., Durand-Delacre, D. & Sachs, J. D. National baselines for the Sustainable Development Goals assessed in the SDG Index and dashboards. Nat. Geosci. 10, 547–555 (2017).

Article 
CAS 

Google Scholar
 

Jones, E. R., Bierkens, M. F. P. & van Vliet, M. T. H. Current and future global water scarcity intensifies when accounting for surface water quality. Nat. Clim. Change 14, 629–635 (2024).

Article 
CAS 

Google Scholar
 

Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 12, 1915 (2021).

Article 

Google Scholar
 

Boretti, A. & Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2, 15 (2019).

Article 

Google Scholar
 

Beltran-Peña, A. & D’Odorico, P. Future food security in Africa under climate change. Earth’s Future 10, e2022EF002651 (2022).

Article 

Google Scholar
 

Li, X. et al. Hydrological cycle in the Heihe River basin and its implication for water resource management in endorheic basins. J. Geophys. Res. Atmos. 123, 890–914 (2018).

Article 

Google Scholar
 

Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).

Article 
CAS 

Google Scholar
 

Zhou, X. Y., Yang, Y. H., Sheng, Z. P. & Zhang, Y. Q. Reconstructed natural runoff helps to quantify the relationship between upstream water use and downstream water scarcity in China’s river basins. Hydrol. Earth Syst. Sci. 23, 2491–2505 (2019).

Article 
CAS 

Google Scholar
 

Graham, N. T. et al. Humans drive future water scarcity changes across all Shared Socioeconomic Pathways. Environ. Res. Lett. 15, 014007 (2020).

Article 

Google Scholar
 

Cui, R. Y. et al. Regional responses to future, demand-driven water scarcity. Environ. Res. Lett. 13, 094006 (2018).

Article 

Google Scholar
 

Kriegler, E. et al. The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Global Environ. Change 22, 807–822 (2012).

Article 

Google Scholar
 

Bijl, D. L. et al. A global analysis of future water deficit based on different allocation mechanisms. Water Resour. Res. 54, 5803–5824 (2018).

Article 

Google Scholar
 

Jafarzadegan, K. et al. Recent advances and new frontiers in riverine and coastal flood modeling. Rev. Geophys. 61, e2022RG000788 (2023).

Article 

Google Scholar
 

Calvin, K. et al. GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev. 12, 677–698 (2019).

Article 
CAS 

Google Scholar
 

Cao, M. et al. Spatial sequential modeling and predication of global land use and land cover changes by integrating a global change assessment model and cellular automata. Earth’s Future 7, 1102–1116 (2019).

Article 

Google Scholar
 

Malik, A. et al. Implications of an emission trading scheme for India’s net-zero strategy: a modelling-based assessment. Environ. Res. Lett. 19, 084043 (2024).

Article 

Google Scholar
 

Guo, A. J. et al. Predicting the water rebound effect in China under the Shared Socioeconomic Pathways. Int. J. Environ. Res. Public Health 18, 1326 (2021).

Article 

Google Scholar
 

Hanasaki, N. et al. A global water scarcity assessment under Shared Socio-economic Pathways – part 1: water use. Hydrol. Earth Syst. Sci. 17, 2375–2391 (2013).

Article 

Google Scholar
 

Sun, S. et al. Unraveling the effect of inter-basin water transfer on reducing water scarcity and its inequality in China. Water Res. 194, 116931 (2021).

Article 
CAS 

Google Scholar
 

Li, Y. Q., Zhang, L. X., Zhang, P. P., Li, X. Q. & Hao, Y. Water-energy-food nexus in China: an interregional comparison. Agric. Water Manage. 301, 108964 (2024).

Article 

Google Scholar
 

Neu, D. A., Lahann, J. & Fettke, P. A systematic literature review on state-of-the-art deep learning methods for process prediction. Artif. Intell. Rev. 55, 801–827 (2022).

Article 

Google Scholar
 

Fleming, S. W. Demand modulation of water scarcity sensitivities to secular climatic variation: theoretical insights from a computational maquette. Hydrol. Sci. J. 61, 2849–2859 (2016).

Article 

Google Scholar
 

Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change Human Policy Dimensions 42, 153–168 (2017).

Article 

Google Scholar
 

Castro, M. C. et al. Examples of coupled human and environmental systems from the extractive industry and hydropower sector interfaces. Proc. Natl Acad. Sci. USA 113, 14528–14535 (2016).

Article 
CAS 

Google Scholar
 

Thacker, S. et al. Infrastructure for sustainable development. Nat. Sustain. 2, 324–331 (2019).

Article 

Google Scholar
 

Wang, H. et al. Dietary shift can enhance the environmental benefits of crop redistribution. Environ. Impact Assess. Rev. 106, 107494 (2024).

Article 

Google Scholar
 

Ansink, E. & Houba, H. Market power in water markets. J. Environ. Econ. Manage. 64, 237–252 (2012).

Article 

Google Scholar
 

Shi, J., Wu, J. J. & Olen, B. Impacts of climate and weather on irrigation technology adoption and agricultural water use in the US Pacific Northwest. Agric. Econ. 53, 387–406 (2022).

Article 

Google Scholar
 

Nyiwul, L. Demand for water innovation: evidence on wastewater technology adoption in thirteen African countries. Econ. Change Restruct. 56, 3383–3410 (2023).

Article 

Google Scholar
 

Gershman, S. J. What have we learned about artificial intelligence from studying the brain?. Biol. Cybern. 118, 1–5 (2024).

Article 

Google Scholar
 

Pincetl, S., Hogue, T. S. & Mini, C. Patterns and controlling factors of residential water use in Los Angeles, California. Water Policy 16, 1054–1069 (2014).

Article 

Google Scholar
 

Savelli, E., Mazzoleni, M., Di Baldassarre, G., Cloke, H. & Rusca, M. Urban water crises driven by elites’ unsustainable consumption. Nat. Sustainability 6, 929–940 (2023).

Article 

Google Scholar
 

Huang, J. J., Wu, W. Y., Maier, H. R., Wang, Q. J. & Hughes, J. A multi-objective optimization-based framework for extending reservoir service life in a changing world. J. Hydrol. 637, 131409 (2024).

Article 

Google Scholar
 

Chen, Z. H., Ki, D., Li, Z. K. & Wang, K. L. Assessing equity in infrastructure investment distribution among US cities. Cities 162, 105898 (2025).

Article 

Google Scholar
 

Mueller, J. T. & Gasteyer, S. The ethnically and racially uneven role of water infrastructure spending in rural economic development. Nat. Water 1, 74–82 (2023).

Article 

Google Scholar
 

Meehan, K., Jurjevich, J. R., Everitt, L., Chun, N. M. J. W. & Sherrill, J. Urban inequality, the housing crisis and deteriorating water access in US cities. Nat. Cities 2, 93–103 (2025).

Article 

Google Scholar
 

Brottrager, M., Crespo Cuaresma, J., Kniveton, D. & Ali, S. H. Natural resources modulate the nexus between environmental shocks and human mobility. Nat. Commun. 14, 1393 (2023).

Article 
CAS 

Google Scholar
 

Liu, M., Zhou, X., Huang, G. & Li, Y. The increasing water stress projected for China could shift the agriculture and manufacturing industry geographically. Commun. Earth Environ. 5, 396 (2024).

Article 

Google Scholar
 

Liu, Y. Q., Zhu, J. L., Li, E. Y., Meng, Z. Y. & Song, Y. Environmental regulation, green technological innovation, and eco-efficiency: the case of Yangtze river economic belt in China. Technol. Forecasting Social Change 155, 119993 (2020).

Article 

Google Scholar
 

Pei, D. J. et al. Agricultural water rebound effect and its driving factors in Xinjiang, China. Agric. Water Manage. 304, 109086 (2024).

Article 

Google Scholar
 

Jaspers, D. & Proff, H. Strengthening capital-intensive companies in technology competition through innovation platforms. Eur. J. Innovation Manage. https://doi.org/10.1108/EJIM-01-2024-0050 (2025).

Article 

Google Scholar
 

Klemun, M. M., Ojanperä, S. & Schweikert, A. Toward evaluating the effect of technology choices on linkages between sustainable development goals. iScience 26, 105727 (2023).

Article 

Google Scholar
 

Lankford, B. A. Resolving the paradoxes of irrigation efficiency: irrigated systems accounting analyses depletion-based water conservation for reallocation. Agric. Water Manage. 287, 108437 (2023).

Article 

Google Scholar
 

Li, H. Y. & Zhao, J. H. Rebound effects of new irrigation technologies: the role of water rights. Am. J. Agric. Econ. 100, 786–808 (2018).

Article 

Google Scholar
 

Vermeire, J., Crucke, S., Mutesi, J. & Vinck, A. Tackling climate change under time-poverty: cooperatives as temporal pacers. Sustainable Dev. 31, 253–264 (2023).

Article 

Google Scholar
 

Graham, N. T. et al. Water sector assumptions for the Shared Socioeconomic Pathways in an integrated modeling framework. Water Resour. Res. 54, 6423–6440 (2018).

Article 

Google Scholar
 

Hejazi, M., Edmonds, J., Chaturvedi, V., Davies, E. & Eom, J. Scenarios of global municipal water-use demand projections over the 21st century. Hydrol. Sci. J. 58, 519–538 (2013).

Article 

Google Scholar
 

Almagro, A. et al. The drivers of hydrologic behavior in Brazil: insights from a catchment classification. Water Resour. Res. 60, e2024WR037212 (2024).

Article 

Google Scholar
 

Kimura, M. Generalized t-SNE through the lens of information geometry. IEEE Access 9, 129619–129625 (2021).

Article 

Google Scholar
 

Wu, S., Han, H., Hou, B. & Diao, K. Hybrid model for short-term water demand forecasting based on error correction using chaotic time series. Water 12, 1683 (2020).

Article 

Google Scholar
 

Seok, J.-H. et al. Abnormal data refinement and error percentage correction methods for effective short-term hourly water demand forecasting. Int. J. Control Autom. Syst. 12, 1245–1256 (2014).

Article 

Google Scholar
 

Bata, M. H., Carriveau, R. & Ting, D. S. K. Short-term water demand forecasting using nonlinear autoregressive artificial neural networks. J. Water Resour. Plan. Manage. 146, 04020008 (2020).

Article 

Google Scholar
 

Chen, J. & Boccelli, D. L. Forecasting hourly water demands with seasonal autoregressive models for real-time application. Water Resources Res. 54, 879–894 (2018).

Article 

Google Scholar
 

Rajballie, A., Tripathi, V. & Chinchamee, A. Water consumption forecasting models – a case study in Trinidad (Trinidad and Tobago). Water Supply 22, 5434–5447 (2022).

Article 

Google Scholar
 

Garen, D. C. Improved techniques in regression-based streamflow volume forecasting. J. Water Resour. Plann. Manage. 118, 654–670 (1992).

Article 

Google Scholar
 

Fleming, S. W., Garen, D. C., Goodbody, A. G., McCarthy, C. S. & Landers, L. C. Assessing the new Natural Resources Conservation Service water supply forecast model for the American West: a challenging test of explainable, automated, ensemble artificial intelligence. J. Hydrol. 602, 126782 (2021).

Article 

Google Scholar
 

Zhang, Y. Q., Yin, Y. H., Yin, M. J. & Zhang, X. F. A high-resolution gridded dataset for China’s monthly sectoral water use. Sci. Data 12, 1157 (2025).

Article 

Google Scholar
 

Liu, L. L., Cao, X., Li, S. J. & Jie, N. A 31-year (1990-2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci. Data 11, 124 (2024).

Article 

Google Scholar
 

Kummu, M., Kosonen, M. & Sayyar, S. M. Downscaled gridded global dataset for gross domestic product (GDP) per capita PPP over 1990–2022. Sci. Data 12, 178 (2025).

Article 

Google Scholar
 

Zhang, L., Xie, Y. H., Zhu, X. F., Ma, Q. M. & Brocca, L. CIrrMap250: annual maps of China’s irrigated cropland from 2000 to 2020 developed through multisource data integration. Earth Syst. Sci. Data 16, 5207–5226 (2024).

Article 

Google Scholar
 

Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 degrees C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).

Article 
CAS 

Google Scholar
 

Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

Article 

Google Scholar
 

Babuna, P. et al. Modeling water inequality and water security: the role of water governance. J. Environ. Manage. 326, 116815–116815 (2023).

Article 

Google Scholar
 

Sheng, J. Data and code for: global water security threatened by rising inequality. Zenodo https://doi.org/10.5281/zenodo.17445879 (2025).