Parker, E. N. Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955).
Batchelor, G. K. & Proudman, I. The effects. of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Math. 7, 83–103 (1954).
Terry, P. W. Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72, 109–165 (2000).
Yoshizawa, A. Self-consistent turbulent dynamo modeling of reversed field pinches and planetary magnetic fields. Phys. Fluids B 2, 1589–1600 (1990).
Kiuchi, K., Cerdá-Durán, P., Kyutoku, K., Sekiguchi, Y. & Shibata, M. Efficient magnetic-field amplification due to the Kelvin–Helmholtz instability in binary neutron star mergers. Phys. Rev. D 92, 124034 (2015).
Kiuchi, K., Reboul-Salze, A., Shibata, M. & Sekiguchi, Y. A large-scale magnetic field produced by a solar-like dynamo in binary neutron star mergers. Nat. Astron. 8, 298–307 (2024).
Price, D. J. & Rosswog, S. Producing ultrastrong magnetic fields in neutron star mergers. Science 312, 719–722 (2006).
Tsokaros, A., Bamber, J., Ruiz, M. & Shapiro, S. L. Masking the equation-of-state effects in binary neutron star mergers. Phys. Rev. Lett. 134, 121401 (2025).
Basu, A. et al. Detection of an ~20 kpc coherent magnetic field in the outskirt of merging spirals: the Antennae galaxies. Mon. Not. R. Astron. Soc. 464, 1003–1017 (2017).
Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Clarendon Press, 1961).
Palenzuela, C. et al. Turbulent magnetic field amplification in binary neutron star mergers. Phys. Rev. D 106, 023013 (2022).
Vasil, G. M. et al. The solar dynamo begins near the surface. Nature 629, 769 (2024).
Terry, P. W. in Zonal Jets (eds Galperin, B. & Read, P. L.) 181–193 (Cambridge Univ. Press, 2019).
Hazra, G., Nandy, D., Kitchatinov, L. & Choudhuri, A. R. Mean field models of flux transport dynamo and meridional circulation in the Sun and stars. Space Sci. Rev. 219, 39 (2023).
Gizon, L. et al. Meridional flow in the Sun’s convection zone is a single cell in each hemisphere. Science 368, 1469–1472 (2020).
Abramowicz, M. A., Lanza, A., Spiegel, E. A. & Szuszkiewicz, E. Vortices on accretion disks. Nature 356, 41–43 (1992).
Chadayammuri, U. et al. Constraining merging galaxy clusters with X-ray and lensing simulations and observations: the case of Abell 2146. Mon. Not. R. Astron. Soc. 509, 1201–1216 (2021).
Chadayammuri, U., ZuHone, J., Nulsen, P., Nagai, D. & Russell, H. Turbulent magnetic fields in merging clusters: a case study of Abell 2146. Mon. Not. R. Astron. Soc. 512, 2157–2170 (2022).
Neronov, A. & Vovk, I. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73–75 (2010).
Brandenburg, A. & Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005).
Kulsrud, R. M. & Zweibel, E. G. On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71, 046901 (2008).
Tobias, S. M. & Cattaneo, F. Shear-driven dynamo waves at high magnetic Reynolds number. Nature 497, 463–465 (2013).
Squire, J. & Bhattacharjee, A. Generation of large-scale magnetic fields by small-scale dynamo in shear flows. Phys. Rev. Lett. 115, 175003 (2015).
Steenbeck, M., Krause, F. & Radler, K.-H. Z. Naturforsch. 21a, 369–376 (1966).
Cattaneo, F. & Hughes, D. W. Nonlinear saturation of the turbulent α effect. Phys. Rev. E 54, R4532 (1996).
Vainshtein, S. & Cattaneo, F. Nonlinear restrictions on dynamo action. Astrophys. J. 393, 165–171 (1992).
Brandenburg, A., Elstner, D., Masada, Y. & Pipin, V. Turbulent processes and mean-field dynamo. Space Sci. Rev. 219, 55 (2023).
Pouquet, A., Frisch, U. & Leorat, J. Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321–354 (1976).
Howe, R., Chaplin, W. J., Christensen-Dalsgaard, J., Elsworth, Y. P. & Schou, J. Update on global helioseismic observations of the solar torsional oscillation. Res. Notes AAS 6, 261 (2022).
Smith, K. M., Caulfield, C. P. & Taylor, J. R. Turbulence in forced stratified shear flows. J. Fluid Mech. 910, A42 (2021).
Hathaway, D. H. The solar cycle. Living Rev. Sol. Phys. 39, 227 (2015).
Ebrahimi, F. & Blackman, E. G. Radially dependent large-scale dynamos in global cylindrical shear flows and the local Cartesian limit. Mon. Not. R. Astron. Soc. 459, 1422–1431 (2016).
Elsässer, W. M. The hydromagnetic equations. Phys. Rev. 79, 183 (1950).
Bendre, A. B., Subramanian, K., Elstner, D. & Gressel, O. Turbulent transport coefficients in galactic dynamo simulations using singular value decomposition. Mon. Not. R. Astron. Soc. 491, 3870–3883 (2020).
Lecoanet, D. et al. A validated non-linear Kelvin–Helmholtz benchmark for numerical hydrodynamics. Mon. Not. R. Astron. Soc. 455, 4274–4288 (2016).
Zhang, H. & Brandenburg, A. Solar kinetic energy and cross helicity spectra. Astrophys. J. Lett. 862, L17 (2018).
Rahbarnia, K. et al. Direct observation of the turbulent EMF and transport of magnetic field in a liquid sodium experiment. Astrophys. J. 759, 80 (2012).
Kaplan, E. J. et al. Reducing global turbulent resistivity by eliminating large eddies in a spherical liquid-sodium experiment. Phys. Rev. Lett. 106, 254502 (2011).
Mondal, T. & Bhat, P. Unified treatment of mean-field dynamo and angular-momentum transport in magnetorotational instability-driven turbulence. Phys. Rev. E 108, 065201 (2023).
Taylor, J. B. Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139–1141 (1974).
Zrake, J. & MacFadyen, A. I. Magnetic energy production by turbulence in binary neutron star mergers. Astrophys. J. Lett. 769, L29 (2013).
Kunnumkai, K. et al. Detecting electromagnetic counterparts to LIGO/Virgo/KAGRA gravitational-wave events with DECam: neutron star mergers. Astrophys. J. 993, 15 (2025).
Maggiore, M. et al. Science case for the Einstein Telescope. J. Cosmol. Astropart. Phys. 03, 050 (2020).
Radice, D. General-relativistic large-eddy simulations of binary neutron star mergers. Astrophys. J. Lett. 838, L2 (2017).
Mandal, K., Kosovichev, A. G. & Pipin, V. V. Helioseismic properties of dynamo waves in the variation of solar differential rotation. Astrophys. J. 973, 36 (2024).
Yokoi, N. Unappreciated cross-helicity effects in plasma physics: anti-diffusion effects in dynamo and momentum transport. Rev. Mod. Plasma Phys. 7, e33 (2023).
Chakraborty, S., Choudhuri, A. R. & Chatterjee, P. Why does the Sun’s torsional oscillation begin before the sunspot cycle? Phys. Rev. Lett. 102, 041102 (2009).
Yokoi, N., Schmitt, D., Pipin, V. & Hamba, F. A new simple dynamo model for stellar activity cycle. Astrophys. J. 824, 67 (2016).
Pecora, F. et al. Relaxation of the turbulent magnetosheath. Mon. Not. R. Astron. Soc. 525, 67–72 (2023).
Tripathi, B., Terry, P. W., Fraser, A. E., Zweibel, E. G. & Pueschel, M. J. Three-dimensional shear-flow instability saturation via stable modes. Phys. Fluids 35, 105151 (2023).
Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D. & Brown, B. P. Dedalus: a flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. 2, 023068 (2020).
Ascher, U. M., Ruuth, S. J. & Spiteri, R. J. Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997).
Wang, D. & Ruuth, S. J. Variable step-size implicit-explicit linear multistep methods for time-dependent partial differential equations. J. Comput. Math. 26, 838–855 (2008).
Mininni, P. D., Alexakis, A. & Pouquet, A. Shell-to-shell energy transfer in magnetohydrodynamics II. Kinematic dynamo. Phys. Rev. E 72, 046302 (2005).
Alexakis, A., Mininni, P. D. & Pouquet, A. Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence. Phys. Rev. E 72, 046301 (2005).
Tripathi, B. et al. Codes, data, and additional materials for “Large-scale dynamos driven by shear-flow-induced jets”. Zenodo https://doi.org/10.5281/zenodo.17162239 (2025).
Tripathi, B., Terry, P. W., Fraser, A. E., Zweibel, E. G. & Pueschel, M. J. Mechanism for sequestering magnetic energy at large scales in shear-flow turbulence. Phys. Plasmas 29, 070701 (2022).
Marston, J. B., Conover, E. & Schneider, T. Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65, 1955–1966 (2008).
Cope, L., Garaud, P. & Caulfield, C. The dynamics of stratified horizontal shear flows at low Péclet number. J. Fluid Mech. 903, A1 (2020).
Pueschel, M. J., Jenko, F., Told, D. & Büchner, J. Gyrokinetic simulations of magnetic reconnection. Phys. Plasmas 18, 112102 (2011).
Pueschel, M. J. et al. Magnetic reconnection turbulence in strong guide fields: Basic properties and application to coronal heating. Astrophys. J. Suppl. Ser. 213, 30 (2014).
Gruzinov, A. V. & Diamond, P. H. Self-consistent mean field electrodynamics of turbulent dynamos. Phys. Plasmas 2, 1941–1946 (1995).
Biglari, H., Diamond, P. H. & Terry, P. W. Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2, 1–4 (1990).
Townsend, A. A. The Structure of Turbulent Shear Flow 2nd edn (Cambridge Univ. Press, 1976).
Verma, M. K. Energy Transfers in Fluid Flows: Multiscale and Spectral Perspectives (Cambridge Univ. Press, 2019).
Reuter, K., Jenko, F. & Forest, C. B. Turbulent magnetohydrodynamic dynamo action in a spherically bounded von Kármán flow at small magnetic Prandtl numbers. N. J. Phys. 13, 073019 (2011).
Baiotti, L., Giacomazzo, B. & Rezzolla, L. Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to a black hole. Phys. Rev. D 78, 084033 (2008).
Most, E. R. & Quataert, E. Flares, jets, and quasiperiodic outbursts from neutron star merger remnants. Astrophys. J. Lett. 947, L15 (2023).
Combi, L. & Siegel, D. M. Jets from neutron-star merger remnants and massive blue kilonovae. Phys. Rev. Lett. 131, 231402 (2023).
Olausen, S. A. & Kaspi, V. M. The McGill Magnetar Catalog. Astrophys. J. Suppl. Ser. 212, 6 (2014).
Bahramian, A. & Degenaar, N. Low-Mass X-ray Binaries (Springer Nature, 2022).
Anderson, M. et al. Magnetized neutron-star mergers and gravitational-wave signals. Phys. Rev. Lett. 100, 191101 (2008).
Aguilera-Miret, R., Viganò, D. & Palenzuela, C. Universality of the turbulent magnetic field in hypermassive neutron stars produced by binary mergers. Astrophys. J. Lett. 926, L31 (2022).
Charbonneau, P. Dynamo models of the solar cycle. Living Rev. Sol. Phys. 17, 4 (2020).
Rüdiger, G., Küker, M. & Schnerr, R. S. Cross helicity at the solar surface by simulations and observations. Astron. Astrophys. 546, A23 (2012).
Brandenburg, A. The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 539–547 (2005).
Yousef, T. A. et al. Generation of magnetic field by combined action of turbulence and shear. Phys. Rev. Lett. 100, 184501 (2008).
Blackman, E. G. Mean magnetic field generation in sheared rotators. Astrophys. J. 529, 138–145 (2000).
Brandenburg, A. & Urpin, V. Magnetic fields in young galaxies due to the cross-helicity effect. Astron. Astrophys. 332, L41–L44 (1998).
Elias-López, A., Del Sordo, F. & Viganò, D. Vorticity and magnetic dynamo from subsonic expansion waves. Astron. Astrophys. 677, A46 (2023).
Hughes, D. W. & Proctor, M. R. E. Large-scale dynamo action driven by velocity shear and rotating convection. Phys. Rev. Lett. 102, 044501 (2008).