Parker, E. N. Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955).

Article 
MathSciNet 

Google Scholar
 

Batchelor, G. K. & Proudman, I. The effects. of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Math. 7, 83–103 (1954).

Article 
MathSciNet 

Google Scholar
 

Terry, P. W. Suppression of turbulence and transport by sheared flow. Rev. Mod. Phys. 72, 109–165 (2000).

Article 

Google Scholar
 

Yoshizawa, A. Self-consistent turbulent dynamo modeling of reversed field pinches and planetary magnetic fields. Phys. Fluids B 2, 1589–1600 (1990).

Article 
CAS 

Google Scholar
 

Kiuchi, K., Cerdá-Durán, P., Kyutoku, K., Sekiguchi, Y. & Shibata, M. Efficient magnetic-field amplification due to the Kelvin–Helmholtz instability in binary neutron star mergers. Phys. Rev. D 92, 124034 (2015).

Article 

Google Scholar
 

Kiuchi, K., Reboul-Salze, A., Shibata, M. & Sekiguchi, Y. A large-scale magnetic field produced by a solar-like dynamo in binary neutron star mergers. Nat. Astron. 8, 298–307 (2024).

Article 

Google Scholar
 

Price, D. J. & Rosswog, S. Producing ultrastrong magnetic fields in neutron star mergers. Science 312, 719–722 (2006).

Article 
CAS 
PubMed 

Google Scholar
 

Tsokaros, A., Bamber, J., Ruiz, M. & Shapiro, S. L. Masking the equation-of-state effects in binary neutron star mergers. Phys. Rev. Lett. 134, 121401 (2025).

Article 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Basu, A. et al. Detection of an ~20 kpc coherent magnetic field in the outskirt of merging spirals: the Antennae galaxies. Mon. Not. R. Astron. Soc. 464, 1003–1017 (2017).

Article 
CAS 

Google Scholar
 

Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Clarendon Press, 1961).

Palenzuela, C. et al. Turbulent magnetic field amplification in binary neutron star mergers. Phys. Rev. D 106, 023013 (2022).

Article 
MathSciNet 
CAS 

Google Scholar
 

Vasil, G. M. et al. The solar dynamo begins near the surface. Nature 629, 769 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Terry, P. W. in Zonal Jets (eds Galperin, B. & Read, P. L.) 181–193 (Cambridge Univ. Press, 2019).

Hazra, G., Nandy, D., Kitchatinov, L. & Choudhuri, A. R. Mean field models of flux transport dynamo and meridional circulation in the Sun and stars. Space Sci. Rev. 219, 39 (2023).

Article 

Google Scholar
 

Gizon, L. et al. Meridional flow in the Sun’s convection zone is a single cell in each hemisphere. Science 368, 1469–1472 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Abramowicz, M. A., Lanza, A., Spiegel, E. A. & Szuszkiewicz, E. Vortices on accretion disks. Nature 356, 41–43 (1992).

Article 

Google Scholar
 

Chadayammuri, U. et al. Constraining merging galaxy clusters with X-ray and lensing simulations and observations: the case of Abell 2146. Mon. Not. R. Astron. Soc. 509, 1201–1216 (2021).

Article 

Google Scholar
 

Chadayammuri, U., ZuHone, J., Nulsen, P., Nagai, D. & Russell, H. Turbulent magnetic fields in merging clusters: a case study of Abell 2146. Mon. Not. R. Astron. Soc. 512, 2157–2170 (2022).

Article 
CAS 

Google Scholar
 

Neronov, A. & Vovk, I. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73–75 (2010).

Article 
CAS 
PubMed 

Google Scholar
 

Brandenburg, A. & Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005).

Article 
MathSciNet 

Google Scholar
 

Kulsrud, R. M. & Zweibel, E. G. On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71, 046901 (2008).

Article 

Google Scholar
 

Tobias, S. M. & Cattaneo, F. Shear-driven dynamo waves at high magnetic Reynolds number. Nature 497, 463–465 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Squire, J. & Bhattacharjee, A. Generation of large-scale magnetic fields by small-scale dynamo in shear flows. Phys. Rev. Lett. 115, 175003 (2015).

Article 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Steenbeck, M., Krause, F. & Radler, K.-H. Z. Naturforsch. 21a, 369–376 (1966).

Article 

Google Scholar
 

Cattaneo, F. & Hughes, D. W. Nonlinear saturation of the turbulent α effect. Phys. Rev. E 54, R4532 (1996).

Article 
CAS 

Google Scholar
 

Vainshtein, S. & Cattaneo, F. Nonlinear restrictions on dynamo action. Astrophys. J. 393, 165–171 (1992).

Article 

Google Scholar
 

Brandenburg, A., Elstner, D., Masada, Y. & Pipin, V. Turbulent processes and mean-field dynamo. Space Sci. Rev. 219, 55 (2023).

Article 

Google Scholar
 

Pouquet, A., Frisch, U. & Leorat, J. Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321–354 (1976).

Article 

Google Scholar
 

Howe, R., Chaplin, W. J., Christensen-Dalsgaard, J., Elsworth, Y. P. & Schou, J. Update on global helioseismic observations of the solar torsional oscillation. Res. Notes AAS 6, 261 (2022).

Article 

Google Scholar
 

Smith, K. M., Caulfield, C. P. & Taylor, J. R. Turbulence in forced stratified shear flows. J. Fluid Mech. 910, A42 (2021).

Article 
MathSciNet 
CAS 

Google Scholar
 

Hathaway, D. H. The solar cycle. Living Rev. Sol. Phys. 39, 227 (2015).


Google Scholar
 

Ebrahimi, F. & Blackman, E. G. Radially dependent large-scale dynamos in global cylindrical shear flows and the local Cartesian limit. Mon. Not. R. Astron. Soc. 459, 1422–1431 (2016).

Article 

Google Scholar
 

Elsässer, W. M. The hydromagnetic equations. Phys. Rev. 79, 183 (1950).

Article 

Google Scholar
 

Bendre, A. B., Subramanian, K., Elstner, D. & Gressel, O. Turbulent transport coefficients in galactic dynamo simulations using singular value decomposition. Mon. Not. R. Astron. Soc. 491, 3870–3883 (2020).

Article 

Google Scholar
 

Lecoanet, D. et al. A validated non-linear Kelvin–Helmholtz benchmark for numerical hydrodynamics. Mon. Not. R. Astron. Soc. 455, 4274–4288 (2016).

Article 

Google Scholar
 

Zhang, H. & Brandenburg, A. Solar kinetic energy and cross helicity spectra. Astrophys. J. Lett. 862, L17 (2018).

Article 

Google Scholar
 

Rahbarnia, K. et al. Direct observation of the turbulent EMF and transport of magnetic field in a liquid sodium experiment. Astrophys. J. 759, 80 (2012).

Article 

Google Scholar
 

Kaplan, E. J. et al. Reducing global turbulent resistivity by eliminating large eddies in a spherical liquid-sodium experiment. Phys. Rev. Lett. 106, 254502 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Mondal, T. & Bhat, P. Unified treatment of mean-field dynamo and angular-momentum transport in magnetorotational instability-driven turbulence. Phys. Rev. E 108, 065201 (2023).

Article 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Taylor, J. B. Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139–1141 (1974).

Article 

Google Scholar
 

Zrake, J. & MacFadyen, A. I. Magnetic energy production by turbulence in binary neutron star mergers. Astrophys. J. Lett. 769, L29 (2013).

Article 

Google Scholar
 

Kunnumkai, K. et al. Detecting electromagnetic counterparts to LIGO/Virgo/KAGRA gravitational-wave events with DECam: neutron star mergers. Astrophys. J. 993, 15 (2025).

Maggiore, M. et al. Science case for the Einstein Telescope. J. Cosmol. Astropart. Phys. 03, 050 (2020).

Article 

Google Scholar
 

Radice, D. General-relativistic large-eddy simulations of binary neutron star mergers. Astrophys. J. Lett. 838, L2 (2017).

Article 

Google Scholar
 

Mandal, K., Kosovichev, A. G. & Pipin, V. V. Helioseismic properties of dynamo waves in the variation of solar differential rotation. Astrophys. J. 973, 36 (2024).

Article 
CAS 

Google Scholar
 

Yokoi, N. Unappreciated cross-helicity effects in plasma physics: anti-diffusion effects in dynamo and momentum transport. Rev. Mod. Plasma Phys. 7, e33 (2023).

Article 

Google Scholar
 

Chakraborty, S., Choudhuri, A. R. & Chatterjee, P. Why does the Sun’s torsional oscillation begin before the sunspot cycle? Phys. Rev. Lett. 102, 041102 (2009).

Article 
PubMed 

Google Scholar
 

Yokoi, N., Schmitt, D., Pipin, V. & Hamba, F. A new simple dynamo model for stellar activity cycle. Astrophys. J. 824, 67 (2016).

Article 

Google Scholar
 

Pecora, F. et al. Relaxation of the turbulent magnetosheath. Mon. Not. R. Astron. Soc. 525, 67–72 (2023).

Article 

Google Scholar
 

Tripathi, B., Terry, P. W., Fraser, A. E., Zweibel, E. G. & Pueschel, M. J. Three-dimensional shear-flow instability saturation via stable modes. Phys. Fluids 35, 105151 (2023).

Article 
CAS 

Google Scholar
 

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D. & Brown, B. P. Dedalus: a flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. 2, 023068 (2020).

Article 
CAS 

Google Scholar
 

Ascher, U. M., Ruuth, S. J. & Spiteri, R. J. Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997).

Article 
MathSciNet 

Google Scholar
 

Wang, D. & Ruuth, S. J. Variable step-size implicit-explicit linear multistep methods for time-dependent partial differential equations. J. Comput. Math. 26, 838–855 (2008).

MathSciNet 

Google Scholar
 

Mininni, P. D., Alexakis, A. & Pouquet, A. Shell-to-shell energy transfer in magnetohydrodynamics II. Kinematic dynamo. Phys. Rev. E 72, 046302 (2005).

Article 
MathSciNet 

Google Scholar
 

Alexakis, A., Mininni, P. D. & Pouquet, A. Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence. Phys. Rev. E 72, 046301 (2005).

Article 
MathSciNet 

Google Scholar
 

Tripathi, B. et al. Codes, data, and additional materials for “Large-scale dynamos driven by shear-flow-induced jets”. Zenodo https://doi.org/10.5281/zenodo.17162239 (2025).

Tripathi, B., Terry, P. W., Fraser, A. E., Zweibel, E. G. & Pueschel, M. J. Mechanism for sequestering magnetic energy at large scales in shear-flow turbulence. Phys. Plasmas 29, 070701 (2022).

Article 
CAS 

Google Scholar
 

Marston, J. B., Conover, E. & Schneider, T. Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65, 1955–1966 (2008).

Article 

Google Scholar
 

Cope, L., Garaud, P. & Caulfield, C. The dynamics of stratified horizontal shear flows at low Péclet number. J. Fluid Mech. 903, A1 (2020).

Article 
CAS 

Google Scholar
 

Pueschel, M. J., Jenko, F., Told, D. & Büchner, J. Gyrokinetic simulations of magnetic reconnection. Phys. Plasmas 18, 112102 (2011).

Article 

Google Scholar
 

Pueschel, M. J. et al. Magnetic reconnection turbulence in strong guide fields: Basic properties and application to coronal heating. Astrophys. J. Suppl. Ser. 213, 30 (2014).

Article 

Google Scholar
 

Gruzinov, A. V. & Diamond, P. H. Self-consistent mean field electrodynamics of turbulent dynamos. Phys. Plasmas 2, 1941–1946 (1995).

Article 
MathSciNet 
CAS 

Google Scholar
 

Biglari, H., Diamond, P. H. & Terry, P. W. Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2, 1–4 (1990).

Article 
CAS 

Google Scholar
 

Townsend, A. A. The Structure of Turbulent Shear Flow 2nd edn (Cambridge Univ. Press, 1976).

Verma, M. K. Energy Transfers in Fluid Flows: Multiscale and Spectral Perspectives (Cambridge Univ. Press, 2019).

Reuter, K., Jenko, F. & Forest, C. B. Turbulent magnetohydrodynamic dynamo action in a spherically bounded von Kármán flow at small magnetic Prandtl numbers. N. J. Phys. 13, 073019 (2011).

Article 

Google Scholar
 

Baiotti, L., Giacomazzo, B. & Rezzolla, L. Accurate evolutions of inspiralling neutron-star binaries: prompt and delayed collapse to a black hole. Phys. Rev. D 78, 084033 (2008).

Article 

Google Scholar
 

Most, E. R. & Quataert, E. Flares, jets, and quasiperiodic outbursts from neutron star merger remnants. Astrophys. J. Lett. 947, L15 (2023).

Article 

Google Scholar
 

Combi, L. & Siegel, D. M. Jets from neutron-star merger remnants and massive blue kilonovae. Phys. Rev. Lett. 131, 231402 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Olausen, S. A. & Kaspi, V. M. The McGill Magnetar Catalog. Astrophys. J. Suppl. Ser. 212, 6 (2014).

Article 

Google Scholar
 

Bahramian, A. & Degenaar, N. Low-Mass X-ray Binaries (Springer Nature, 2022).

Anderson, M. et al. Magnetized neutron-star mergers and gravitational-wave signals. Phys. Rev. Lett. 100, 191101 (2008).

Article 
PubMed 

Google Scholar
 

Aguilera-Miret, R., Viganò, D. & Palenzuela, C. Universality of the turbulent magnetic field in hypermassive neutron stars produced by binary mergers. Astrophys. J. Lett. 926, L31 (2022).

Article 
CAS 

Google Scholar
 

Charbonneau, P. Dynamo models of the solar cycle. Living Rev. Sol. Phys. 17, 4 (2020).

Article 

Google Scholar
 

Rüdiger, G., Küker, M. & Schnerr, R. S. Cross helicity at the solar surface by simulations and observations. Astron. Astrophys. 546, A23 (2012).

Article 

Google Scholar
 

Brandenburg, A. The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 539–547 (2005).

Article 

Google Scholar
 

Yousef, T. A. et al. Generation of magnetic field by combined action of turbulence and shear. Phys. Rev. Lett. 100, 184501 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

Blackman, E. G. Mean magnetic field generation in sheared rotators. Astrophys. J. 529, 138–145 (2000).

Article 

Google Scholar
 

Brandenburg, A. & Urpin, V. Magnetic fields in young galaxies due to the cross-helicity effect. Astron. Astrophys. 332, L41–L44 (1998).


Google Scholar
 

Elias-López, A., Del Sordo, F. & Viganò, D. Vorticity and magnetic dynamo from subsonic expansion waves. Astron. Astrophys. 677, A46 (2023).

Article 

Google Scholar
 

Hughes, D. W. & Proctor, M. R. E. Large-scale dynamo action driven by velocity shear and rotating convection. Phys. Rev. Lett. 102, 044501 (2008).

Article 

Google Scholar