Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 1–14 (2016).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 1–15 (2017).
Manchon, A. et al. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).
Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).
Fernández-Pacheco, A. et al. Three-dimensional nanomagnetism. Nat. Commun. 8, 15756 (2017).
Sheka, D. D. A perspective on curvilinear magnetism. Appl. Phys. Lett. 118, 230502 (2021).
Gubbiotti, G. et al. 2025 roadmap on 3D nanomagnetism. J. Phys. Condens. Matter 37, 143502 (2025).
Fernández-Pacheco, A. et al. Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci. Rep. 3, 1492 (2013).
Zhakina, E. et al. Reconfigurable three-dimensional superconducting nanoarchitectures. Adv. Funct. Mater. 2506057 (2025).
Donnelly, C. et al. Element-specific X-ray phase tomography of 3D structures at the nanoscale. Phys. Rev. Lett. 114, 115501 (2015).
Meng, F. et al. Non-planar geometrical effects on the magnetoelectrical signal in a three-dimensional nanomagnetic circuit. ACS Nano 15, 6765–6773 (2021).
Donnelly, C. et al. Complex free-space magnetic field textures induced by three-dimensional magnetic nanostructures. Nat. Nanotechnol. 17, 136–142 (2022).
Farinha, A. M. A., Yang, S.-H., Yoon, J., Pal, B. & Parkin, S. S. P. Interplay of geometrical and spin chiralities in 3D twisted magnetic ribbons. Nature 639, 67–72 (2025).
Moll, P. J. W. et al. Field-induced density wave in the heavy-fermion compound CeRhIn5. Nat. Commun. 6, 6663 (2015).
Moll, P. J. W. Focused ion beam microstructuring of quantum matter. Annu. Rev. Condens. Matter Phys. 9, 147–162 (2018).
Guo, C. et al. Switchable chiral transport in charge-ordered kagome metal CsV3Sb5. Nature 611, 461–466 (2022).
Höflich, K. et al. Roadmap for focused ion beam technologies. Appl. Phys. Rev. 10, 041311 (2023).
Turnbull, L. A. et al. Interlinking helical spin textures in nanopatterned chiral magnets. Preprint at https://arxiv.org/abs/2511.11372 (2025).
Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).
Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).
Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).
Wakatsuki, R. et al. Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 3, e1602390 (2017).
Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).
Atzori, M., Train, C., Hillard, E. A., Avarvari, N. & Rikken, G. L. J. A. Magneto-chiral anisotropy: from fundamentals to perspectives. Chirality 33, 844–857 (2021).
Yokouchi, T. et al. Electrical magnetochiral effect induced by chiral spin fluctuations. Nat. Commun. 8, 866 (2017).
Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).
Tanaka, M. et al. Topological kagome magnet Co3Sn2S2 thin flakes with high electron mobility and large anomalous Hall effect. Nano Lett. 20, 7476–7481 (2020).
He, Y. et al. Large linear non-saturating magnetoresistance and high mobility in ferromagnetic MnBi. Nat. Commun. 12, 4576 (2021).
Morimoto, T. & Nagaosa, N. Chiral anomaly and giant magnetochiral anisotropy in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117, 146603 (2016).
Wang, Y. et al. Gigantic magnetochiral anisotropy in the topological semimetal ZrTe5. Phys. Rev. Lett. 128, 176602 (2022).
Yang, S.-Y. et al. Field-modulated anomalous Hall conductivity and planar Hall effect in Co3Sn2S2 nanoflakes. Nano Lett. 20, 7860–7867 (2020).
Maurenbrecher, H. et al. Chiral anisotropic magnetoresistance of ferromagnetic helices. Appl. Phys. Lett. 112, 242401 (2018).
Parrott, J. E. A new theory of the size effect in electrical conduction. Proc. Phys. Soc. 85, 1143 (1965).
Baringhaus, J. et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506, 349–354 (2014).
Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCoO2. Science 351, 1061–1064 (2016).
Bachmann, M. D. et al. Directional ballistic transport in the two-dimensional metal PdCoO2. Nat. Phys. 18, 819–824 (2022).
Yasuda, K. et al. Large non-reciprocal charge transport mediated by quantum anomalous Hall edge states. Nat. Nanotechnol. 15, 831–835 (2020).
Evers, F. et al. Theory of chirality induced spin selectivity: progress and challenges. Adv. Mater. 34, 2106629 (2022).
Shitade, A. & Minamitani, E. Geometric spin–orbit coupling and chirality-induced spin selectivity. New J. Phys. 22, 113023 (2020).
Song, A. M. et al. Nonlinear electron transport in an asymmetric microjunction: a ballistic rectifier. Phys. Rev. Lett. 80, 3831–3834 (1998).
Kida, N. et al. Optical magnetoelectric effect in a submicron patterned magnet. Phys. Rev. Lett. 94, 077205 (2005).
Isobe, H. & Nagaosa, N. Toroidal scattering and nonreciprocal transport by magnetic impurities. J. Phys. Soc. Jpn 91, 115001 (2022).
Gaididei, Y., Kravchuk, V. P. & Sheka, D. D. Curvature effects in thin magnetic shells. Phys. Rev. Lett. 112, 257203 (2014).
Ishizuka, H. & Nagaosa, N. Anomalous electrical magnetochiral effect by chiral spin-cluster scattering. Nat. Commun. 11, 2986 (2020).
Yamaguchi, D., Kitaori, A., Nagaosa, N. & Tokura, Y. Magnetoelectric control of spin helicity and nonreciprocal charge transport in a multiferroic metal. Adv. Mater. 37, 2420614 (2025).
Nakamura, D. et al. Nonreciprocal transport in a room-temperature chiral magnet. Sci. Adv. 11, eadw8023 (2025).
Jiang, N., Nii, Y., Arisawa, H., Saitoh, E. & Onose, Y. Electric current control of spin helicity in an itinerant helimagnet. Nat. Commun. 11, 1601 (2020).
Masuda, H. et al. Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film. Nat. Commun. 15, 1999 (2024).
González-Hernández, R., Ritzinger, P., Výborný, K., Železný, J. & Manchon, A. Non-relativistic torque and Edelstein effect in non-collinear magnets. Nat. Commun. 15, 7663 (2024).
Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).
Nadeem, M., Fuhrer, M. S. & Wang, X. The superconducting diode effect. Nat. Rev. Phys. 5, 558–577 (2023).
Pop, F., Auban-Senzier, P., Canadell, E., Rikken, G. L. J. A. & Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nat. Commun. 5, 3757 (2014).
Krstić, V., Roth, S., Burghard, M., Kern, K. & Rikken, G. L. J. A. Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes. J. Chem. Phys. 117, 11315–11319 (2002).
Varnavides, G., Yacoby, A., Felser, C. & Narang, P. Charge transport and hydrodynamics in materials. Nat. Rev. Mater. 8, 726–741 (2023).
Ding, L. et al. Quantum oscillations, magnetic breakdown and thermal Hall effect in Co3Sn2S2. J. Phys. Appl. Phys. 54, 454003 (2021).
Birch, M. T. et al. Dataset for: Nanosculpted 3D helices of a magnetic Weyl semimetal with switchable nonreciprocal electron transport. Zenodo https://doi.org/10.5281/zenodo.17163308 (2025).