FAO, IFAD, UNICEF, W. E. P. & WHO. The State of Food Security and Nutrition in the World 2024 – Financing to End Hunger, Food Insecurity and Malnutrition in All Its Forms. https://doi.org/10.4060/cd1254en (FAO, 2024).

World Food Prize Foundation. Laureate Letter: Hunger’s Tipping Point. World Food Prize https://www.worldfoodprize.org/index.cfm?nodeID=96854&audienceID=1 (World Food Prize, 2025).

WEF. Innovation with a Purpose: The Role of Technology Innovation in Accelerating Food Systems Transformation. (WEF, 2018).

Denning, G. Sustainable intensification of agriculture: the foundation for universal food security. npj Sustain. Agric. 3, 1–5 (2025).

Article 

Google Scholar
 

Giovannucci, D. et al. Food and Agriculture: The Future of Sustainability. SSRN Elect. J. https://doi.org/10.2139/ssrn.2054838 (2012).

Pingali, P. & Raney, T. Asian agricultural development: from the green revolution to the gene revolution. in Reasserting the Rural Development Agenda (eds. Balisacan, A. M. & Fuwa, N.) 159–190 (2007).

Bronson, K. Responsible to whom? Seed innovations and the corporatization of agriculture. J. Responsible Innov. 2, 62–77 (2015).

Article 

Google Scholar
 

Clapp, J. Titans of Industrial Agriculture: How a Few Giant Corporations Came to Dominate the Farm Sector and Why It Matters. (MIT Press, Cambridge, Massachusetts, 2025).

Clapp, J. Explaining Growing Glyphosate Use: The Political Economy of Herbicide-Dependent Agriculture. Glob. Environ. Change 67, 1–11 (2021).

Article 

Google Scholar
 

Pesticides in a Changing Environment: Impact, Assessment, and Remediation. (Elsevier, Oxford, 2023).

Fan, X. et al. Effects of substituting synthetic nitrogen with organic amendments on crop yield, net greenhouse gas emissions and carbon footprint: A global meta-analysis. Field Crops Res 301, 378–4290 (2023).

Article 

Google Scholar
 

Menegat, S., Ledo, A. & Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Nautre: Scientific Reports 12, 14490 (2022).

IPCC. Summary for Policymakers. in Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, Lee, H. & Romero, J.) 1–34 https://doi.org/10.59327/IPCC/AR6-9789291691647.001 (Geneva, 2023).

Loures, L. et al. Assessing the effectiveness of precision agriculture management systems in mediterranean small farms. Sustainability 12, 3765 (2020).

ISPA. Precision Ag Definition. International Society of Precision Agriculture (ISPA, 2024).

McBratney, A., Whelan, B., Ancev, T. & Bouma, J. Future directions of precision agriculture. Precis Agric 6, 7–23 (2005).

Article 

Google Scholar
 

Aubert, B. A., Schroeder, A. & Grimaudo, J. IT as enabler of sustainable farming: an empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 54, 510–520 (2012).

Article 

Google Scholar
 

The Climate Corporation. John Deere and The Climate Corporation Expand Precision and Digital Agriculture Options for Farmers. Climate Fieldview https://climate.com/newsroom/john-deere-climate-corp-expand-precision-digital-ag-options/15 (2015).

Trimble. Top 3 Ways Farmers Win with Precision Ag Software. Trimble: Agriculture https://agriculture.trimble.com/blog/top-3-ways-farmers-win-with-farm-software/ (Trimble, 2018).

Echelon. Precision Farming Improves Input Use. Nutrien Ag Solutions https://echelonag.ca/what-we-do/.

Blue River Technology. See & Spray – Blue River Technology’s precision weed control machine [YouTube]. https://www.youtube.com/watch?v=-YCa8RntsRE (2017).

FCC. Precision agriculture can improve resource use and your bottom line. Farm Credit Canada https://www.fcc-fac.ca/en/knowledge/precision-agriculture-improve-bottom-line.

Ulimwengu, J. M. & Kibonge, A. Climate-smart agriculture practices based on precision agriculture: the case of maize in western Congo. in A thriving agricultural sector in a changing climate: Meeting Malabo Declaration goals through climate-smart agriculture (eds De Pinto, A. & Ulimwengu, M.) 86–102 https://doi.org/10.2499/9780896292949_07 (International Food Policy Research Institute, Washington, D.C., 2017).

Bongiovanni, R. & Lowenberg-DeBoer, J. Precision agriculture and sustainability. Precis. Agric. 5, 359–387 (2004).

Article 

Google Scholar
 

Lindblom, J., Lundström, C., Ljung, M. & Jonsson, A. Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precis. Agric. 18, 309–311 (2017).

Article 

Google Scholar
 

Plant, R. E., Stuart Pettygrove, G. & Reinert, W. R. Precision agriculture can increase profits and limit environmental impacts. Calif. Agric. 54, 66–71 (2000).

Article 

Google Scholar
 

Brown, R. M., Dillon, C. R., Schieffer, J. & Shockley, J. M. The carbon footprint and economic impact of precision agriculture technology on a corn and soybean farm. J. Environ. Econ. Policy 5, 335–348 (2016).

Article 

Google Scholar
 

Balaine, L., Dillon, E. J., Läpple, D. & Lynch, J. Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms. https://doi.org/10.1016/j.landusepol.2019.104437. (2020)

Green, A. G. et al. A scoping review of the digital agricultural revolution and ecosystem services: implications for Canadian policy and research agendas. Facets 6, 1955–1985 (2021).

Article 

Google Scholar
 

Mulla, D. & Khosla, R. Historical Evolution and Recent Advances in Precision Farming. in Soil-Specific Farming: Precision Agriculture (eds. R. Lal & B. A. Stewart) 1–36 (CRC Press, 2016).

IPES-FOOD. From Uniformity to Diversity: A Paradigm Shift from Industrial Agriculture to Diversified Agroecological Systems. www.ipes-food.org (2016).

Oteros-Rozas, E., Ravera, F. & García-Llorente, M. How does agroecology contribute to the transitions towards social-ecological sustainability? Sustainability 11, 4372 (2019).

Article 

Google Scholar
 

Vigani, M., Fellmann, T., Capkovicova, A. P. & Ferrari, E. Harvesting resilience: adapting the EU agricultural system to global challenges. npj Sustainable Agriculture 2, 21 https://doi.org/10.1038/s44264-024-00028-y (2024).

Mazzafera, P., Favarin, J. L. & Andrade, S. A. L. de. Editorial: intercropping systems in sustainable agriculture. Front. Sustain. Food Syst. 5, 1–3 (2021).

Article 

Google Scholar
 

Pavageau, C., Pondini, S. & Geck, M. Money Flows: What Is Holding Back Investment in Agroecological Research for Africa? www.biovision.chwww.ipes-food.org (2020).

González Perea, R. et al. Modelling impacts of precision irrigation on crop yield and in-field water management. Precis. Agric. 19, 497–512 https://doi.org/10.1007/s11119-017-9535-4 (2018).

El Chami, D., Knox, J. W., Daccache, A., Keith Weatherhead, E. & Chami, E. D. Assessing the financial and environmental impacts of precision irrigation in a humid climate. Horticult. Sci. 1, 43–52 (2019).

Article 

Google Scholar
 

Bacenetti, J. et al. May smart technologies reduce the environmental impact of nitrogen fertilization? A case study for paddy rice. Sci. Total Environ. 715, 136956 (2020).

Article 
CAS 

Google Scholar
 

Schumann, A. W. et al. Variable rate granular fertilization of citrus groves: spreader performance with single-tree prescription zones. Appl Eng. Agric 22, 19–24 (2006).

Article 

Google Scholar
 

Scharf, P. C. et al. Sensor-based nitrogen applications out-performed producer-chosen rates for corn in on-farm demonstrations. Agron. J. 103, 1683–1691 (2011).

Article 

Google Scholar
 

Harmel, R. D., Kenimer, A. L., Searcy, S. W. & Torbert, H. A. Runoff water quality impact of variable rate sidedress nitrogen application. Precis Agric 5, 247–261 (2004).

Article 

Google Scholar
 

Colaço, A. F., Pagliuca, L. G., Romanelli, T. L. & Molin, J. P. Economic viability, energy and nutrient balances of site-specific fertilisation for citrus. Biosyst. Eng. 200, 138–156 (2020).

Article 

Google Scholar
 

Chen, L. & Zhu, H. Evaluation of Laser-Guided Intelligent Sprayer to Control Insects and Diseases in Ornamental Nurseries and Fruit Farms. in ASTM Special Technical Publication (ed. Elsik, C. M.) vol. S. T. P. 1627 1–10 (ASTM International, 2020).

Solanelles, F. et al. An electronic control system for pesticide application proportional to the canopy width of tree crops. Biosyst. Eng. 95, 473–481 (2006).

Article 

Google Scholar
 

Moltó, E., Martín, B. & Gutiérrez, A. Pesticide loss reduction by automatic adaptation of spraying on globular trees. J. Agric. Eng. Res. 78, 35–41 (2001).

Article 

Google Scholar
 

Bazame, H. C., Pinto, F. A. C., Queiroz, D. S., de Queiroz, D. M. & Althoff, D. Spectral sensors prove beneficial in determining nitrogen fertilizer needs of Urochloa brizantha cv. Xaraés grass in Brazil. Tropical Grassl.-Forrajes Tropicales 8, 60–71 (2020).

Article 

Google Scholar
 

Cao, Q. et al. Improving nitrogen use efficiency with minimal environmental risks using an active canopy sensor in a wheat-maize cropping system. Field Crops Res. 214, 365–372 (2017).

Article 

Google Scholar
 

Bausch, W. C. & Delgado, J. A. Ground-Based Sensing of Plant Nitrogen Status in Irrigated Corn to Improve Nitrogen Management. Digital Imaging Spectr. Tech.: Appl. Precis. Agricult. Crop Physiol. 66, 151–163 (2004).


Google Scholar
 

Godwin, R. J., Wood, G. A., Taylor, J. C., Knight, S. M. & Welsh, J. P. Precision farming of cereal crops: a review of a six year experiment to develop management guidelines. Biosyst. Eng. 84, 375–391 (2003).

Article 

Google Scholar
 

Borsato, E., Galindo, A., Tarolli, P., Sartori, L. & Marinello, F. Evaluation of the grey water footprint comparing the indirect effects of different agricultural practices. Sustainability 2018 10, 3992 (2018).

CAS 

Google Scholar
 

Diacono, M. et al. A combined approach of geostatistics and geographical clustering for delineating homogeneous zones in a durum wheat field in organic farming. NJAS: Wagening. J. Life Sci. 1, 47–57 (2013).


Google Scholar
 

Du, Q., Chang, N. B., Yang, C. & Srilakshmi, K. R. Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management. J. Environ. Manag. 86, 14–26 (2008).

Article 

Google Scholar
 

Nicol, L. A. & Nicol, C. J. Adoption of precision agriculture to reduce inputs, enhance sustainabiltiy and increase food production: A study of Southern Alberta, Canada. WIT Trans. Ecol. Environ. 217, 327–336 (2018).

Article 

Google Scholar
 

Lassoued, R., Macall, D. M., Smyth, S. J., Phillips, P. W. B. & Hesseln, H. Expert insights on the impacts of, and potential for, agricultural big data. Sustainability 13, 1–18 (2021).

Article 

Google Scholar
 

Schimmelpfennig, D. Farm Profits and Adoption of Precision Agriculture. [Economic Research Report: #217]. www.ers.usda.gov/publications/err-economic-research-report/err217 (2016).

Schimmelpfennig, D. Crop production costs, profits, and ecosystem stewardship with precision agriculture. J. Agric. Appl. Econ. 50, 81–103 (2018).

Article 

Google Scholar
 

Balafoutis, A. et al. Precision agriculture technologies positively contributing to ghg emissions mitigation, farm productivity and economics. Sustainability 9, 1339 (2017).

Article 

Google Scholar
 

Sariga, A., Jaiganesh, S., Vengattaraman, T. & Sujatha, P. An implementation of embedded web server in farming sector. In Proc. International Conference on Communication and Electronics Systems, ICCES 2016, Coimbatore, India. https://doi.org/10.1109/CESYS.2016.7889866 (Institute of Electrical and Electronics Engineers, 2016).

Yinyan, S., Zhichao, H., Xiaochan, W., Odhiambo, M. O. & Weimin, D. Motion analysis and system response of fertilizer feed apparatus for paddy Variable-Rate fertilizer spreader. Comput Electron Agric 153, 239–247 (2018).

Article 

Google Scholar
 

Pätzold, S., Ostermann, M., Heggemann, T. & Wehrle, R. Impact of potassium fertilisation on mobile proximal gamma-ray spectrometry: case study on a long-term field trial. Precis Agric 25, 532–542 (2024).

Article 

Google Scholar
 

Jacquin, E. et al. Does fertilizer type drive soil and litter macroinvertebrate communities in a sugarcane agroecosystem? Evidence from a 10-year field trial. https://doi.org/10.1016/j.agee.2024.109431(2024).

Rodale Institute. Farming Systems Trial: 40-Year Report. (2021).

Nyamekye, A. B., Klerkx, L. & Dewulf, A. Responsibly Designing Digital Agriculture Services Under Uncertainty in the Global South: The case of Esoko-Ghana. In The Politics of Knowledge in Inclusive Development and Innovation (eds Ludwig, D., Boogaard, B., Macnaghten, P.) London, UK, 214–226 https://doi.org/10.4324/9781003112525-13 (Routledge, 2021).

Rezaei-Moghaddam, K. & Salehi, S. Agricultural specialists’ intention toward precision agriculture technologies: integrating innovation characteristics to technology acceptance model. Afr. J. Agric Res 5, 1191–1199 (2010).


Google Scholar
 

Abdulai, A. R. A new green revolution (GR) or neoliberal entrenchment in agri-food systems? Exploring narratives around digital agriculture (DA), food systems, and development in Sub-Sahara Africa. J. Dev. Stud. 58, 1588–1604 (2022).

Article 

Google Scholar
 

Bureau Veritas. Precision Farming in Africa. Bureau Veritas: Africa https://www.bureauveritas.africa/magazine/precision-farming-africa (2021).

AUDA. Bolstering Africa’s Precision Agriculture On Smallholder Farming | AUDA-NEPAD. African Union Development Agency https://www.nepad.org/blog/bolstering-africas-precision-agriculture-smallholder-farming (2021).

Lowder, S. K., Sánchez, M. V. & Bertini, R. Which farms feed the world and has farmland become more concentrated? World Dev. 142, 1–15 (2021).

Article 

Google Scholar
 

Norboo, J. & Tsewang Dolma, M. Relationship between farm size and productivity. IOSR J. Humanities Soc. Sci. 28, 25 (2023).


Google Scholar
 

Ricciardi, V., Mehrabi, Z., Wittman, H., James, D. & Ramankutty, N. Higher yields and more biodiversity on smaller farms. Nat. Sustain 4, 651–657 (2021).

Article 

Google Scholar
 

Ritchie, H. Smallholders produce one-third of the world’s food, less than half of what many headlines claim. Our World in Data https://ourworldindata.org/smallholder-food-production (2021).

Bless, A., Davila, F. & Plant, R. A genealogy of sustainable agriculture narratives: implications for the transformative potential of regenerative agriculture. Agric Hum. Values 40, 1379–1397 (2023).

Article 

Google Scholar
 

Pretty, J. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. 363, 447–465 (2008).

Article 

Google Scholar
 

Garnett, T. Sustainability Problems, Perspectives and Solutions. Conference on ‘Future food and health’ [Symposium I: Sustainability and food security]. Proc. Nutr. Soc. 73, 29–39 (2013).

Purvis, B., Mao, Y. & Robinson, D. Three pillars of sustainability: in search of conceptual origins. Sustain Sci. 14, 681–695 (2019).

Article 

Google Scholar
 

USDA. Sustainable Agriculture. U.S. Department of Agriculture https://www.nal.usda.gov/farms-and-agricultural-production-systems/sustainable-agriculture (2024).

ECO Canada. What is sustainable agriculture? ECO Canada https://eco.ca/blog/what-is-sustainable-agriculture/ (ECO, 2024).

Salliou, N., Muradian, R. & Barnaud, C. Governance of ecosystem services in agroecology: when coordination is needed but difficult to achieve. Sustainability 11, 1158 (2019).

Article 

Google Scholar
 

Maas, B., Fabian, Y., Kross, S. M. & Richter, A. Divergent farmer and scientist perceptions of agricultural biodiversity, ecosystem services and decision-making. Biol. Conserv 256, 109065 (2021).

Article 

Google Scholar
 

Lajoie-O’Malley, A., Bronson, K., van der Burg, S. & Klerkx, L. The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosyst. Serv. 45, 1–12 (2020).


Google Scholar
 

FAO. World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals. http://www.fao.org/3/CA1201EN/ca1201en.pdf (2018).

Nyéléni. The Digitalization of food. Nyéléni Newsletter – No 37 6 (2019).

Dicks, L. V. et al. What agricultural practices are most likely to deliver “sustainable intensification” in the UK? Food Energy Secur 8, e00148 (2019).

Pircher, T. et al. Farmer-centered and structural perspectives on innovation and scaling: a study on sustainable agriculture and nutrition in East Africa. J. Agric. Educ. Ext. 30, 137–158 (2024).

Article 

Google Scholar
 

Bramley, R. G. V., Song, X., Colaço, A. F., Evans, K. J. & Cook, S. E. Did someone say “farmer-centric”? Digital tools for spatially distributed on-farm experimentation. Agron. Sustain Dev. 42, 1–11 (2022).

Article 

Google Scholar
 

Fairbairn, M. et al. Digital agriculture will perpetuate injustice unless led from the grassroots. Nat. Food 6, 312–315 (2025).

Brignardello-Petersen, R., Santesso, N. & Guyatt, G. H. Systematic reviews of the literature: an introduction to current methods. Am. J. Epidemiol. 194, 536–542 (2024).

Haddaway, N. R., Macura, B., Whaley, P. & Pullin, A. S. ROSES Reporting standards for Systematic Evidence Syntheses: Pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Environ. Evid. 7, 4–11 (2018).

Article 

Google Scholar
 

ROSES. ROSES: RepOrting standards for Systematic Evidence Syntheses in environmental research. https://www.roses-reporting.com (2017).

Xu, Y., Gao, Z., Khot, L., Meng, X. & Zhang, Q. A real-time weed mapping and precision herbicide spraying system for row crops. Sensors 18, 4245 (2018).

Rocha, F. C. et al. Weed mapping using techniques of precision agriculture. Planta Daninha 33, 157–164 (2015).

Article 

Google Scholar
 

Vullaganti, N. Precision agriculture technologies for soil site-specific nutrient management: a comprehensive review. Artif. Intell. Agriculture 15, 147–161 (2025).

Article 

Google Scholar
 

Bullock, D. S., Mieno, T. & Hwang, J. The value of conducting on-farm field trials using precision agriculture technology: a theory and simulations. Precis Agric 21, 1027–1044 (2020).

Sichinga-Ligowe, I. et al. An introduction to conducting responsible and reproducible agricultural research. CAB Reviews. 19, https://doi.org/10.1079/cabireviews.2024.0058 (2024).

Cerf, M., Jeuffroy, M. H., Prost, L. & Meynard, J. M. Participatory design of agricultural decision support tools: taking account of the use situations. Agron. Sustain Dev. 32, 899–910 (2012).

Article 

Google Scholar
 

Asopa, V. N. & Beye, G. Management of Agricultural Research: A Training Manual. [Module 2, Research Planning]. https://www.fao.org/4/w7502e/w7502e00.htm#Contents (1997).

Avila, M. Strategies for farming systems research. Food and Agriculture Organization: Open Knowledge https://openknowledge.fao.org/server/api/core/bitstreams/499edead-e9ee-4234-bac0-8e4b161d0ee4/content/x5548e0n.htm.

Nielsen, S. S. et al. Guidance on good practice in conducting scientific assessments in animal health using modelling. EFSA J. 20, e07346 (2022).


Google Scholar