Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).

Article 
CAS 

Google Scholar
 

Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1, 1–11 (2016).

Article 

Google Scholar
 

Jiang, W. et al. Skyrmions in magnetic multilayers. Phys. Rep. 704, 1–49 (2017).

Article 

Google Scholar
 

Lacroix, C., Mendels, P., Mila, F. Introduction to Frustrated Magnetism: Materials, Experiments, Theory Vol. 164 (Springer, 2011).

Binder, K. & Young, A. P. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801 (1986).

Article 
CAS 

Google Scholar
 

Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magnet. Magnet. Materi. 509, 166711 (2020).

Article 
CAS 

Google Scholar
 

Chen, S. et al. All-electrical skyrmionic magnetic tunnel junction. Nature 627, 522–527 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64, 29–64 (1988).

Article 

Google Scholar
 

Karube, K. et al. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet. Sci. Adv. 4, 7043 (2018).

Article 

Google Scholar
 

Kurumaji, T. et al. Skyrmion lattice with a giant topological hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Duine, R., Lee, K.-J., Parkin, S. S. & Stiles, M. D. Synthetic antiferromagnetic spintronics. Nat. Phys. 14, 217–219 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, 4450 (2019).

Article 

Google Scholar
 

Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

He, F. et al. Moiré patterns in 2D materials: a review. ACS Nano 15, 5944–5958 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

Article 
CAS 

Google Scholar
 

Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2d magnets. Science 374, 1140–1144 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Xu, Y. et al. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer cri3. Nat. Nanotechnol. 17, 143–147 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Xiao, F., Chen, K. & Tong, Q. Magnetization textures in twisted bilayer CrX3 (X = Br, I). Phys. Rev. Res. 3, 013027 (2021).

Article 
CAS 

Google Scholar
 

Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Akram, M. & Erten, O. Skyrmions in twisted van der Waals magnets. Phys. Rev. B 103, 140406 (2021).

Article 

Google Scholar
 

Zheng, F. Magnetic skyrmion lattices in a novel 2D-twisted bilayer magnet. Adv. Funct. Mater. 33, 2206923 (2023).

Article 
CAS 

Google Scholar
 

Kim, K.-M., Go, G., Park, M. J. & Kim, S. K. Emergence of stable meron quartets in twisted magnets. Nano Lett. 24, 74–81 (2023).

Article 
PubMed 

Google Scholar
 

Xie, H. et al. Evidence of non-collinear spin texture in magnetic moiré superlattices. Nat. Phys. 19, 1150–1155 (2023).

Article 
CAS 

Google Scholar
 

Cheng, G. et al. Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nat. Electron. 6, 434–442 (2023).

Article 
CAS 

Google Scholar
 

Wang, Z. et al. Composite super-moiré lattices in double-aligned graphene heterostructures. Sci. Adv. 5, 8897 (2019).

Article 

Google Scholar
 

Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Xie, Y. et al. Strong interactions and isospin symmetry breaking in a supermoiré lattice. Science 389, 736–740 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Brown Jr, W. F. The fundamental theorem of fine-ferromagnetic-particle theory. J. Appl. Phys. 39, 993–994 (1968).

Article 

Google Scholar
 

Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Huang, M. et al. Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope. Nat. Commun. 14, 5259 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang, B. et al. Macroscopic tunneling probe of moiré spin textures in twisted CrI3. Nat. Commun. 15, 4982 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Reith, P., Wang, X. R. & Hilgenkamp, H. Analysing magnetism using scanning squid microscopy. Rev. Sci. Instrum. 88, 123706 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Nam, N. N. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

Article 

Google Scholar
 

Wang, C. et al. Fractional Chern insulator in twisted bilayer mote 2. Phys. Rev. Lett. 132, 036501 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

Article 
CAS 

Google Scholar
 

Guo, X. et al. Structural monoclinicity and its coupling to layered magnetism in few-layer CrI3. ACS Nano 15, 10444–10450 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Cantos-Prieto, F. et al. Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets. Nano Lett. 21, 3379–3385 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sung, S. H. et al. Torsional periodic lattice distortions and diffraction of twisted 2D materials. Nat. Commun. 13, 7826 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bogdanov, A. N. & Panagopoulos, C. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys. 2, 492–498 (2020).

Article 

Google Scholar
 

Kato, Y. D., Okamura, Y., Hirschberger, M., Tokura, Y. & Takahashi, Y. Topological magneto-optical effect from skyrmion lattice. Nat. Commun. 14, 5416 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, X. et al. Topological Kerr effects in two-dimensional magnets with broken inversion symmetry. Nat. Phys. 20, 1145–1151 (2024)

Li, S. et al. Observation of stacking engineered magnetic phase transitions within moiré supercells of twisted van der Waals magnets. Nat. Commun. 15, 5712 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jang, M. et al. Direct observation of twisted stacking domains in the van der Waals magnet CrI3. Nat. Commun. 15, 5925 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cai, X. et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett. 19, 3993–3998 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Akram, M. et al. Moiré skyrmions and chiral magnetic phases in twisted CrX3 (X = I, Br, and Cl) bilayers. Nano Lett. 21, 6633–6639 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor crsbr. Nano Lett. 21, 3511–3517 (2021).

Article 
CAS 
PubMed 

Google Scholar
 

Casas, B. W. et al. Coexistence of merons with skyrmions in the centrosymmetric van der Waals ferromagnet Fe5−xGeTe2. Adv. Mater. 35, 2212087 (2023).

Article 
CAS 

Google Scholar
 

Grebenchuk, S. et al. Topological spin textures in an insulating van der Waals ferromagnet. Adv. Mater. 36, 2311949 (2024).

Article 
CAS 

Google Scholar
 

Zur, Y. et al. Magnetic imaging and domain nucleation in CrSBr down to the 2D limit. Adv. Mater. 35, 2307195 (2023).

Article 
CAS 

Google Scholar
 

Augustin, M., Jenkins, S., Evans, R. F. L., Novoselov, K. S. & Santos, E. J. G. Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3. Nat. Commun. 12, 185 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 1–15 (2017).

Article 

Google Scholar
 

Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

Article 

Google Scholar
 

Zhang, L., Ren, J., Wang, J.-S. & Li, B. Topological magnon insulator in insulating ferromagnet. Phys. Rev. B 87, 144101 (2013).

Article 

Google Scholar
 

Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019).

Article 

Google Scholar
 

Peng, R. All raw data corresponding to manuscript “Super-moiré spin textures in twisted 2D antiferromagnets”. Zenodo https://doi.org/10.5281/zenodo.17545114 (2025).