World Health Organization. datadot. 2024 [cited 2024 Sept 9]. COVID-19 cases | WHO COVID-19 dashboard. Available from: https://data.who.int/dashboards/covid19/cases
Wolff G, Limpens RWAL, Zevenhoven-Dobbe JC, Laugks U, Zheng S, De Jong AWM, et al. A molecular pore spans the double membrane of the coronavirus replication organelle. Science. 2020;369:1395–8. https://www.science.org/doi/10.1126/science.abd3629
Shang C, Liu Z, Zhu Y, Lu J, Ge C, Zhang C, et al. SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment. Front Microbiol. 2022;12:780768. https://www.frontiersin.org/articles/10.3389/fmicb.2021.780768/full
Kalashnyk O, Lykhmus O, Izmailov M, Koval L, Komisarenko S, Skok M. SARS-Cov-2 spike protein fragment 674–685 protects mitochondria from releasing cytochrome c in response to apoptogenic influence. Biochem Biophys Res Commun. 2021;561:14–8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112323/
Prasada Kabekkodu S, Chakrabarty S, Jayaram P, Mallya S, Thangaraj K, Singh KK, et al. Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion. 2023;69:43–56. https://linkinghub.elsevier.com/retrieve/pii/S1567724923000053
Saxena R, Sharma P, Kumar S, Agrawal N, Sharma SK, Awasthi A. Modulation of mitochondria by viral proteins. Life Sci. 2023;313:121271. https://www.sciencedirect.com/science/article/pii/S0024320522009717
Rong Z, Tu P, Xu P, Sun Y, Yu F, Tu N, et al. The mitochondrial response to DNA damage. Front Cell Dev Biol. 2021;9:669379. https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.669379/full
Ma K, Chen G, Li W, Kepp O, Zhu Y, Chen Q. Mitophagy, mitochondrial homeostasis, and cell fate. Front Cell Dev Biol. 2020;8:467. https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2020.00467/full
Meyer JN, Leuthner TC, Luz AL Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology. 2017;391:42–53. https://www.sciencedirect.com/science/article/pii/S0300483X17302251
Van Der Vaart M, Pretorius PJ. Circulating DNA: Its origin and fluctuation. Ann N Y Acad Sci. 2008;1137:18–26. https://nyaspubs.onlinelibrary.wiley.com/doi/10.1196/annals.1448.022
Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta Int J Clin Chem. 2001;313:139–42.
West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017;17:363–75. https://www.nature.com/articles/nri.2017.21
Pasini E, Corsetti G, Romano C, Scarabelli TM, Chen-Scarabelli C, Saravolatz L, et al. Serum Metabolic Profile in Patients With Long-Covid (PASC) syndrome: Clinical implications. Front Med. 2021;8:714426. https://www.frontiersin.org/articles/10.3389/fmed.2021.714426/full
Wynberg E, Han AX, Van Willigen HDG, Verveen A, Van Pul L, Maurer I, et al. Inflammatory profiles are associated with long COVID up to 6 months after COVID-19 onset: A prospective cohort study of individuals with mild to critical COVID-19. Essouma M, editor. PLOS ONE [Internet]. 2024 July 15 [cited 2025 Mar 3];19:e0304990. Available from: https://dx.plos.org/10.1371/journal.pone.0304990
Nunn AVW, Guy GW, Brysch W, Bell JD Understanding long COVID; mitochondrial health and adaptation—old pathways, new problems. Biomedicines. 2022 10:3113. Available from: https://www.mdpi.com/2227-9059/10/12/3113
Scozzi D, Cano M, Ma L, Zhou D, Zhu JH, O’Halloran JA, et al. Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19. JCI Insight [Internet]. 2021. cited 2024 Apr 4]; Available from: http://insight.jci.org/articles/view/143299
Tanaka A, Wakayama K, Fukuda Y, Ohta S, Homma T, Ando K, et al. Increased levels of circulating cell-free DNA in COVID-19 patients with respiratory failure. Sci Rep. 2024;14:17399. https://www.nature.com/articles/s41598-024-68433-4
Szögi T, Borsos BN, Masic D, Radics B, Bella Z, Bánfi A, et al. Novel biomarkers of mitochondrial dysfunction in Long COVID patients. GeroScience [Internet]. 2024. Available from: https://link.springer.com/10.1007/s11357-024-01398-4
Gambardella S, Limanaqi F, Ferese R, Biagioni F, Campopiano R, Centonze D, et al. ccf-mtDNA as a Potential Link Between the Brain and Immune System in Neuro-Immunological Disorders. Front Immunol [Internet]. 2019 May 9 [cited 2024 Apr 10];10. Available from: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2019.01064/full
Kageyama Y, Kasahara T, Kato M, Sakai S, Deguchi Y, Tani M, et al. The relationship between circulating mitochondrial DNA and inflammatory cytokines in patients with major depression. J Affect Disord. 2018;233:15–20. https://linkinghub.elsevier.com/retrieve/pii/S0165032717306614
Delbarba A, Abate G, Prandelli C, Marziano M, Buizza L, Arce Varas N, et al. Mitochondrial alterations in peripheral mononuclear blood cells from Alzheimer’s disease and mild cognitive impairment patients. Oxid Med Cell Longev. 2016;2016:1–11. http://www.hindawi.com/journals/omcl/2016/5923938/
Li W, Zhu L, Chen Y, Zhuo Y, Wan S, Guo R. Association between mitochondrial DNA levels and depression: a systematic review and meta-analysis. BMC Psychiatry. 2023;23:866. https://doi.org/10.1186/s12888-023-05358-8
Lindqvist D, Furmark T, Lavebratt C, Ohlsson L, Månsson KNT. Plasma circulating cell-free mitochondrial DNA in social anxiety disorder. Psychoneuroendocrinology. 2023;148:106001. https://www.sciencedirect.com/science/article/pii/S0306453022003420
Ryan KM, Patterson I, McLoughlin DM. Peroxisome proliferator-activated receptor gamma co-activator-1 alpha in depression and the response to electroconvulsive therapy. Psychol Med. 2019;49:1859–68. https://www.cambridge.org/core/journals/psychological-medicine/article/abs/peroxisome-proliferatoractivated-receptor-gamma-coactivator1-alpha-in-depression-and-the-response-to-electroconvulsive-therapy/AD1543E32C318E2918CC4DED52406B36
Peter RS, Nieters A, Göpel S, Merle U, Steinacker JM, Deibert P, et al. Persistent symptoms and clinical findings in adults with post-acute sequelae of COVID-19/post-COVID-19 syndrome in the second year after acute infection: A population-based, nested case-control study. Mody A, editor. PLOS Med [Internet]. 2025 Jan 23 [cited 2025 Sept 12];22:e1004511. Available from: https://dx.plos.org/10.1371/journal.pmed.1004511
Peter RS, Nieters A, Kräusslich HG, Brockmann SO, Göpel S, Kindle G, et al. Post-acute sequelae of covid-19 six to 12 months after infection: population based study. BMJ [Internet]. 2022 Oct 13 [cited 2023 Oct 12];e071050. Available from: https://www.bmj.com/lookup/doi/10.1136/bmj-2022-071050
Ajaz S, Czajka A, Malik A Accurate Measurement of Circulating Mitochondrial DNA Content from Human Blood Samples Using Real-Time Quantitative PCR. In: Weissig V, Edeas M, editors. Mitochondrial Medicine [Internet]. New York, NY: Springer New York; 2015 [cited 2024 Aug 26]. p. 117–31. (Methods in Molecular Biology; vol. 1264). Available from: https://link.springer.com/10.1007/978-1-4939-2257-4_12
Rooney JP, Ryde IT, Sanders LH, Howlett EH, Colton MD, Germ KE, et al. PCR Based Determination of Mitochondrial DNA Copy Number in Multiple Species. In: Palmeira CM, Rolo AP, editors. Mitochondrial Regulation [Internet]. New York, NY: Springer New York; 2015 [cited 2024 Aug 26]. p. 23–38. (Methods in Molecular Biology; vol. 1241). Available from: http://link.springer.com/10.1007/978-1-4939-1875-1_3
Kumar M, Srivastava S, Singh SA, Das AK, Das GC, Dhar B, et al. Cell-free mitochondrial DNA copy number variation in head and neck squamous cell carcinoma: A study of non-invasive biomarker from Northeast India. Tumor Biol. 2017;39:101042831773664. http://journals.sagepub.com/doi/10.1177/1010428317736643
Kohler C, Radpour R, Barekati Z, Asadollahi R, Bitzer J, Wight E, et al. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer. 2009;8:105. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780981/
Panagopoulou M, Karaglani M, Tzitzikou K, Kessari N, Arvanitidis K, Amarantidis K, et al. Mitochondrial fraction of circulating cell-free DNA as an indicator of human pathology. Int J Mol Sci. 2024;25:4199.
Smith A. Symbol digit modalities test. West Psychol Serv. 1973;1–22.
Helmstaedter M, Lendt M, Lux S Verbaler Lern- und Merkfähigkeitstest (VLMT). Göttingen: BELTZ TEST GmbH; 2001.
Lezak MD Neuropsychological assessment. 2nd edn. New York: Oxford University Press; 1983.
Thiel CM, Özyurt J, Nogueira W, Puschmann S Effects of age on long term memory for degraded speech. Front Hum Neurosci [Internet]. 2016 [cited 2024 Mar 1];10. Available from: https://www.frontiersin.org/articles/10.3389/fnhum.2016.00473
Reitan RM. Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills. 1958;8:271–6. http://journals.sagepub.com/doi/10.2466/pms.1958.8.3.271
Löwe B, Zipfel S, Herzog W Deutsche Übersetzung und Validierung des «Brief Patient Health Questionnaire (Brief PHQ)». Pfizer. 2002;.
Spitzer RL. Validation and utility of a self-report version of PRIME-MDThe PHQ primary care study. JAMA. 1999;282:1737. http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.282.18.1737
R Core Team. R: A language and environment for statistical computing. [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2024. Available from: https://www.R-project.org/
Mair P, Wilcox R. Robust statistical methods in R using the WRS2 package. Behav Res Methods. 2020;52:464–88. https://doi.org/10.3758/s13428-019-01246-w
Revelle W psych: Procedures for Psychological, Psychometric, and Personality Research [Internet]. 2024 [cited 2024 July 16]. Available from: https://cran.r-project.org/web/packages/psych/index.html
Kaiser HF. A second generation little jiffy. Psychometrika. 1970;35:401–15. http://link.springer.com/10.1007/BF02291817
Fox J, Weisberg S, Price B. car: Companion to Applied Regression [Internet]. 2001. Available from: https://CRAN.R-project.org/package=car
Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. mediation: R package for causal mediation analysis. J Stat Softw. 2014;59:1–38. https://doi.org/10.18637/jss.v059.i05
Ajaz S, McPhail MJ, Singh KK, Mujib S, Trovato FM, Napoli S, et al. Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of patients with COVID-19. Am J Physiol-Cell Physiol. 2021;320:C57–65. https://journals.physiology.org/doi/10.1152/ajpcell.00426.2020
Semadhi M, Mulyaty D, Halimah E, Levita J. Healthy mitochondrial DNA in balanced mitochondrial dynamics: A potential marker for neuro‑aging prediction (Review). Biomed Rep. 2023;19:64. http://www.spandidos-publications.com/10.3892/br.2023.1646
Ohlsson L, Hall A, Lindahl H, Danielsson R, Gustafsson A, Lavant E, et al. Increased level of circulating cell-free mitochondrial DNA due to a single bout of strenuous physical exercise. Eur J Appl Physiol. 2020;120:897–905. https://doi.org/10.1007/s00421-020-04330-8
Zhong F, Liang S, Zhong Z. Emerging role of mitochondrial DNA as a major driver of inflammation and disease progression. Trends Immunol. 2019;40:1120–33. https://linkinghub.elsevier.com/retrieve/pii/S1471490619302182
Gonçalves VF, Mendes-Silva AP, Koyama E, Vieira E, Kennedy JL, Diniz B Increased levels of circulating cell-free mtDNA in plasma of late life depression subjects. J Psychiatr Res. 2021 139:25–9. https://linkinghub.elsevier.com/retrieve/pii/S0022395621002843
Lindqvist D, Wolkowitz OM, Picard M, Ohlsson L, Bersani FS, Fernström J, et al. Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacology. 2018;43:1557–64. https://www.nature.com/articles/s41386-017-0001-9
Křenek P, Hořínková J, Bartečků E. Peripheral inflammatory markers in subtypes and core features of depression: A systematized review. Psychopathology. 2023;56:403–16. https://karger.com/PSP/article/doi/10.1159/000528907
Fernström J, Ohlsson L, Asp M, Lavant E, Holck A, Grudet C, et al. Plasma circulating cell-free mitochondrial DNA in depressive disorders. PLOS ONE. 2021;16:e0259591. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259591
Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22:e102–7. https://www.sciencedirect.com/science/article/pii/S1473309921007039
Miller GA, Chapman JP. Misunderstanding analysis of covariance. J Abnorm Psychol. 2001;110:40–8.
Elisia I, Lam V, Cho B, Hay M, Li MY, Yeung M, et al. The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci Rep. 2020;10:19480. https://www.nature.com/articles/s41598-020-76556-7
Su Z, Efremov L, Mikolajczyk R. Differences in the levels of inflammatory markers between metabolically healthy obese and other obesity phenotypes in adults: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2024;34:251–69. https://linkinghub.elsevier.com/retrieve/pii/S0939475323003484
Luppino FS, De Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BWJH, et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry. 2010;67:220. http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archgenpsychiatry.2010.2
Mazza MG, Palladini M, Poletti S, Benedetti F. Post-COVID-19 depressive symptoms: Epidemiology, pathophysiology, and pharmacological treatment. CNS Drugs. 2022;36:681–702. https://link.springer.com/10.1007/s40263-022-00931-3
Dantzer R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol. 2004;500:399–411. https://linkinghub.elsevier.com/retrieve/pii/S0014299904007496
Thurn L, Schulz C, Borgmann D, Klaus J, Ellinger S, Walter M, et al. Altered food liking in depression is driven by macronutrient composition. Psychol Med. 2025;55:e20. https://www.cambridge.org/core/product/identifier/S0033291724003581/type/journal_article
Alonso‐Pedrero L, Bes‐Rastrollo M, Marti A. Effects of antidepressant and antipsychotic use on weight gain: A systematic review. Obes Rev. 2019;20:1680–90. https://onlinelibrary.wiley.com/doi/10.1111/obr.12934
Jager KJ, Zoccali C, MacLeod A, Dekker FW. Confounding: What it is and how to deal with it. Kidney Int. 2008;73:256–60. https://www.sciencedirect.com/science/article/pii/S0085253815529748