Hagen, E. M. Acute complications of spinal cord injuries. World J. Orthop. 6, 17–23 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sezer, N., Akkus, S. & Ugurlu, F. G. Chronic complications of spinal cord injury. World J. Orthop. 6, 24–33 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ahuja, C. S. et al. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 3, 17018 (2017).

Article 
PubMed 

Google Scholar
 

Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

Article 
PubMed 

Google Scholar
 

Burda, J. E. & Sofroniew, M. V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81, 229–248 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schnell, L., Fearn, S., Klassen, H., Schwab, M. E. & Perry, V. H. Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur. J. Neurosci. 11, 3648–3658 (1999).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, B. & Gensel, J. C. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Exp. Neurol. 258, 112–120 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Alexander, J. K. & Popovich, P. G. Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. Prog. Brain Res. 175, 125–137 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

David, S. & Kroner, A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 12, 388–399 (2011).

Article 
CAS 
PubMed 

Google Scholar
 

Anderson, M. A., Ao, Y. & Sofroniew, M. V. Heterogeneity of reactive astrocytes. Neurosci. Lett. 565, 23–29 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Minev, I. R. et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Chen, M. S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).

Article 
CAS 
PubMed 

Google Scholar
 

Lang, B. T. et al. Modulation of the proteoglycan receptor PTPsigma promotes recovery after spinal cord injury. Nature 518, 404–408 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Lu, P. et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264–1273 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tysseling-Mattiace, V. M. et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 28, 3814–3823 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Alvarez, Z. et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 374, 848–856 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, M. & Izpisua Belmonte, J. C. Organoids—preclinical models of human disease. N. Engl. J. Med. 380, 569–579 (2019).

Article 
PubMed 

Google Scholar
 

Gupta, N. et al. Modeling injury and repair in kidney organoids reveals that homologous recombination governs tubular intrinsic repair. Sci. Transl. Med. 14, eabj4772 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shoemaker, A. R. et al. Biofidelic dynamic compression of human cortical spheroids reproduces neurotrauma phenotypes. Dis. Models Mech. 14, dmm048916 (2021).

Article 
CAS 

Google Scholar
 

Henrique, D., Abranches, E., Verrier, L. & Storey, K. G. Neuromesodermal progenitors and the making of the spinal cord. Development 142, 2864–2875 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gouti, M. et al. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. 12, e1001937 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Meinhardt, A. et al. 3D reconstitution of the patterned neural tube from embryonic stem cells. Stem Cell Rep. 3, 987–999 (2014).

Article 

Google Scholar
 

Ogura, T., Sakaguchi, H., Miyamoto, S. & Takahashi, J. Three-dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells. Development 145, dev162214 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gribaudo, S. et al. Self-organizing models of human trunk organogenesis recapitulate spinal cord and spine co-morphogenesis. Nat. Biotechnol. 42, 1243–1253 (2023).

Article 
PubMed 

Google Scholar
 

Hendriks, D. et al. Human fetal brain self-organizes into long-term expanding organoids. Cell 187, 712–732.e738 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Andersen, J. et al. Generation of functional human 3D cortico-motor assembloids. Cell 183, 1913–1929.e1926 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Faustino Martins, J. M. et al. Self-organizing 3D human trunk neuromuscular organoids. Cell Stem Cell 26, 172–186.e176 (2020).

Article 
CAS 
PubMed 

Google Scholar
 

Xu, J. et al. Generation of neural organoids for spinal-cord regeneration via the direct reprogramming of human astrocytes. Nat. Biomed. Eng. 7, 253–269 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Zhang, Q. et al. Single-cell analysis reveals dynamic changes of neural cells in developing human spinal cord. EMBO Rep. 22, e52728 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Andersen, J. et al. Single-cell transcriptomic landscape of the developing human spinal cord. Nat. Neurosci. 26, 902–914 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Rayon, T., Maizels, R. J., Barrington, C. & Briscoe, J. Single-cell transcriptome profiling of the human developing spinal cord reveals a conserved genetic programme with human-specific features. Development 148, dev199711 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cui, H., Webber, M. J. & Stupp, S. I. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94, 1–18 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Beniash, E., Hartgerink, J. D., Storrie, H., Stendahl, J. C. & Stupp, S. I. Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomater. 1, 387–397 (2005).

Article 
PubMed 

Google Scholar
 

Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

Article 
CAS 
PubMed 

Google Scholar
 

Boekhoven, J. & Stupp, S. I. 25th anniversary article: supramolecular materials for regenerative medicine. Adv. Mater. 26, 1642–1659 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Alvarez, Z. et al. Artificial extracellular matrix scaffolds of mobile molecules enhance maturation of human stem cell-derived neurons. Cell Stem Cell 30, 219–238.e214 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yuan, S. C. et al. Supramolecular motion enables chondrogenic bioactivity of a cyclic peptide mimetic of transforming growth factor-beta1. J. Am. Chem. Soc. 146, 21555–21567 (2024).

Article 
PubMed 

Google Scholar
 

Edelbrock, A. N. et al. Supramolecular nanostructure activates TrkB receptor signaling of neuronal cells by mimicking brain-derived neurotrophic factor. Nano Lett. 18, 6237–6247 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kozlowski, M. T., Crook, C. J. & Ku, H. T. Towards organoid culture without Matrigel. Commun. Biol. 4, 1387 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Berns, E. J. et al. Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials 35, 185–195 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Brennan, F. H. et al. Microglia coordinate cellular interactions during spinal cord repair in mice. Nat. Commun. 13, 4096 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rust, R. & Kaiser, J. Insights into the dual role of inflammation after spinal cord injury. J. Neurosci. 37, 4658–4660 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Park, D. S. et al. iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer. Nature 623, 397–405 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Schafer, S. T. et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 186, 2111–2126.e2120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Matson, K. J. E. et al. Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat. Commun. 13, 5628 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bellver-Landete, V. et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat. Commun. 10, 518 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bradbury, E. J. & Burnside, E. R. Moving beyond the glial scar for spinal cord repair. Nat. Commun. 10, 3879 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rolls, A., Shechter, R. & Schwartz, M. The bright side of the glial scar in CNS repair. Nat. Rev. Neurosci. 10, 235–241 (2009).

Article 
CAS 
PubMed 

Google Scholar
 

Hellenbrand, D. J. et al. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J. Neuroinflammation 18, 284 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, Y. et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587, 613–618 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lorach, H. et al. Walking naturally after spinal cord injury using a brain-spine interface. Nature 618, 126–133 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boulting, G. L. et al. A functionally characterized test set of human induced pluripotent stem cells. Nat. Biotechnol. 29, 279–286 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Elmore, M. R. et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82, 380–397 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Haenseler, W. et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Rep. 8, 1727–1742 (2017).

Article 
CAS 

Google Scholar
 

Vaux, D. L., Fidler, F. & Cumming, G. Replicates and repeats—what is the difference and is it significant? A brief discussion of statistics and experimental design. EMBO Rep. 13, 291–296 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar