Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

Article 
ADS 

Google Scholar
 

Fang, N., Lee, H., Sun, C. & Zhang, X. Sub–diffraction-limited optical imaging with a silver superlens. Science 308, 534–538 (2005).

Article 
ADS 

Google Scholar
 

Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

Article 
ADS 

Google Scholar
 

Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 313, 1595 (2006).

Article 
ADS 

Google Scholar
 

Kim, S., Peng, Y., Yves, S. & Alù, A. Loss compensation and super-resolution with excitations at complex frequencies. Phys. Rev. X 13, 041024 (2023).


Google Scholar
 

Guan, F. et al. Overcoming losses in superlenses with synthetic waves of complex frequency. Science 381, 766–771 (2023).

Article 
ADS 

Google Scholar
 

Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758–762 (2009).

Article 
ADS 

Google Scholar
 

Liu, N., Mesch, M., Weiss, T., Hentschel, M. & Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010).

Article 
ADS 

Google Scholar
 

Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

Article 
ADS 

Google Scholar
 

Sreekanth, K. V. et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621–627 (2016).

Article 
ADS 

Google Scholar
 

Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

Article 
ADS 
MathSciNet 

Google Scholar
 

Basov, D. N., Fogler, M. M. & García De Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

Article 

Google Scholar
 

Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J. Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

Article 
ADS 

Google Scholar
 

Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

Article 
ADS 

Google Scholar
 

Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

Article 
ADS 

Google Scholar
 

Hu, H. et al. Gate-tunable negative refraction of mid-infrared polaritons. Science 379, 558–561 (2023).

Article 
ADS 

Google Scholar
 

Ni, G. X. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

Article 
ADS 

Google Scholar
 

Xiao, S. et al. Loss-free and active optical negative-index metamaterials. Nature 466, 735–738 (2010).

Article 
ADS 

Google Scholar
 

Hamm, J. M., Wuestner, S., Tsakmakidis, K. L. & Hess, O. Theory of light amplification in active fishnet metamaterials. Phys. Rev. Lett. 107, 167405 (2011).

Article 
ADS 

Google Scholar
 

Sadatgol, M., Özdemir, ŞK., Yang, L. & Güney, D. O. Plasmon injection to compensate and control losses in negative index metamaterials. Phys. Rev. Lett. 115, 035502 (2015).

Article 
ADS 

Google Scholar
 

Archambault, A., Besbes, M. & Greffet, J. J. Superlens in the time domain. Phys. Rev. Lett. 109, 097405 (2012).

Article 
ADS 

Google Scholar
 

Ghoshroy, A., Özdemir, ŞK. & Güney, D. Ö Loss compensation in metamaterials and plasmonics with virtual gain [invited]. Opt. Mater. Express 10, 1862–1880 (2020).

Article 

Google Scholar
 

Tetikol, H. S. & Aksun, M. I. Enhancement of resolution and propagation length by sources with temporal decay in plasmonic devices. Plasmonics 15, 2137–2146 (2020).

Article 

Google Scholar
 

An, S., Liu, T., Zhu, J. & Cheng, L. Complex-frequency calculation in acoustics with real-frequency solvers. Phys. Rev. B 111, L020301 (2025).

Article 
ADS 

Google Scholar
 

Tsakmakidis, K. L., Pickering, T. W., Hamm, J. M., Page, A. F. & Hess, O. Completely stopped and dispersionless light in plasmonic waveguides. Phys. Rev. Lett. 112, 167401 (2014).

Article 
ADS 

Google Scholar
 

Baranov, D. G., Krasnok, A. & Alù, A. Coherent virtual absorption based on complex zero excitation for ideal light capturing. Optica 4, 1457–1461 (2017).

Article 
ADS 

Google Scholar
 

Li, H., Mekawy, A., Krasnok, A. & Alù, A. Virtual parity-time symmetry. Phys. Rev. Lett. 124, 193901 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Trainiti, G., Radi, Y., Ruzzene, M. & Alù, A. Coherent virtual absorption of elastodynamic waves. Sci. Adv. 5, eaaw3255 (2019).

Article 
ADS 

Google Scholar
 

Kim, S., Lepeshov, S., Krasnok, A. & Alù, A. Beyond bounds on light scattering with complex frequency excitations. Phys. Rev. Lett. 129, 203601 (2022).

Article 
ADS 

Google Scholar
 

Gu, Z. et al. Transient non-Hermitian skin effect. Nat. Commun. 13, 7668 (2022).

Article 
ADS 

Google Scholar
 

Hinney, J. et al. Efficient excitation and control of integrated photonic circuits with virtual critical coupling. Nat. Commun. 15, 2741 (2024).

Article 
ADS 

Google Scholar
 

Kim, S., Krasnok, A. & Alù, A. Complex-frequency excitations in photonics and wave physics. Science 387, eado4128 (2025).

Article 

Google Scholar
 

Basov, D. N. & Fogler, M. M. ‘The unreasonable effectiveness of mathematics’ in evading polaritonic losses. Nat. Mater. 23, 445–446 (2024).

Article 
ADS 

Google Scholar
 

Cheng, Q. & Li, T. Complex-frequency waves: beat loss and win sensitivity. Light Sci. Appl. 13, 40 (2024).

Article 
ADS 

Google Scholar
 

Zouros, G. P., Loulas, I., Almpanis, E., Krasnok, A. & Tsakmakidis, K. L. Anisotropic virtual gain and large tuning of particles’ scattering by complex-frequency excitations. Commun. Phys. 7, 283 (2024).

Article 

Google Scholar
 

Loulas, I., Psychogiou, E.-C., Tsakmakidis, K. L. & Stefanou, N. Analytic theory of complex-frequency-aided virtual absorption. Opt. Express 33, 28333–28342 (2025).

Article 
ADS 

Google Scholar
 

Zeng, K. et al. Synthesized complex-frequency excitation for ultrasensitive molecular sensing. eLight 4, 1 (2024).

Article 

Google Scholar
 

Guan, F. et al. Compensating losses in polariton propagation with synthesized complex frequency excitation. Nat. Mater. 23, 506 (2024).

Article 
ADS 

Google Scholar
 

Rogov, A. & Narimanov, E. Space−time metamaterials. ACS Photonics 5, 2868–2877 (2018).

Article 

Google Scholar
 

Farhi, A., Mekawy, A., Alù, A. & Stone, D. Excitation of absorbing exceptional points in the time domain. Phys. Rev. A 106, L031503 (2022).

Article 
ADS 

Google Scholar
 

Farhi, A., Cerjan, A. & Stone, A. D. Generating and processing optical waveforms using spectral singularities. Phys. Rev. A 109, 013512 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Farhi, A., Dai, W., Kim, S., Alù, A. & Stone, D. Efficient general waveform catching by a cavity at an absorbing exceptional point. Phys. Rev. A 109, L041502 (2024).

Article 
ADS 

Google Scholar
 

Fleischhauer, M., Imamoglu, A. & Marangos, P. J. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

Article 
ADS 

Google Scholar
 

Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).

Article 
ADS 

Google Scholar
 

Gralak, B., Lequime, M., Zerrad, M. & Amra, C. Phase retrieval of reflection and transmission coefficients from Kramers–Kronig relations. J. Opt. Soc. Am. A 32, 456–462 (2015).

Article 

Google Scholar
 

Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

Article 
ADS 

Google Scholar