Piatak, M. Jr. et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259, 1749–1754 (1993).


Google Scholar
 

Yoshioka, K. et al. Detection of hepatitis C virus by polymerase chain reaction and response to interferon-alpha therapy: relationship to genotypes of hepatitis C virus. Hepatology 16, 293–299 (1992).


Google Scholar
 

Wang, D. et al. Clinical characteristics of 138 Hospitalized patients with 2019 Novel Coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).


Google Scholar
 

Pao, C. C. et al. Detection and identification of Mycobacterium tuberculosis by DNA amplification. J. Clin. Microbiol. 28, 1877–1880 (1990).


Google Scholar
 

Ma, L. et al. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct. Target. Ther. 9, 336 (2024).


Google Scholar
 

Cescon, D. W., Bratman, S. V., Chan, S. M. & Siu, L. L. Circulating tumor DNA and liquid biopsy in oncology. Nat. Cancer 1, 276–290 (2020).


Google Scholar
 

Dheda, K. et al. Multidrug-resistant tuberculosis. Nat. Rev. Dis. Prim. 10, 22 (2024).


Google Scholar
 

Theron, G. et al. Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial. Lancet 383, 424–435 (2014).


Google Scholar
 

World Health Organization. Automated Real-time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children: Policy Update (World Health Organization, 2013).

Macesic, N., Uhlemann, A.-C. & Peleg, A. Y. Multidrug-resistant Gram-negative bacterial infections. Lancet 405, 257–272 (2025).


Google Scholar
 

Deveson, I. W. et al. Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nat. Biotechnol. 39, 1115–1128 (2021).


Google Scholar
 

McDonald, B. R. et al. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci. Transl. Med. 11, eaax7392 (2019).


Google Scholar
 

Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4, 136ra168–136ra168 (2012).


Google Scholar
 

Gilboa, T., Garden, P. M. & Cohen, L. Single-molecule analysis of nucleic acid biomarkers—a review. Analytica Chim. acta 1115, 61–85 (2020).


Google Scholar
 

Johnson-Buck, A. et al. Kinetic fingerprinting to identify and count single nucleic acids. Nat. Biotechnol. 33, 730–732 (2015).


Google Scholar
 

Shin, S. et al. Quantification of purified endogenous miRNAs with high sensitivity and specificity. Nat. Commun. 11, 6033 (2020).


Google Scholar
 

Kim, J., Kang, C., Shin, S. & Hohng, S. Rapid quantification of miRNAs using dynamic FRET-FISH. Commun. Biol. 5, 1072 (2022).


Google Scholar
 

Shin, S. et al. Fast, sensitive, and specific multiplexed single-molecule detection of circulating tumor DNA. Biosens. Bioelectron. 242, 115694 (2023).


Google Scholar
 

Hayward, S. L. et al. Ultraspecific and amplification-free quantification of mutant DNA by single-molecule kinetic fingerprinting. J. Am. Chem. Soc. 140, 11755–11762 (2018).


Google Scholar
 

Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. methods 11, 313–318 (2014).


Google Scholar
 

Condrat, C. E. et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9, 276 (2020).

O’Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402 (2018).


Google Scholar
 

Nakamura, K. et al. An exosome-based transcriptomic signature for noninvasive, early detection of patients with pancreatic ductal adenocarcinoma: a multicenter cohort study. Gastroenterology 163, 1252–1266. e1252 (2022).


Google Scholar
 

Xiong, D. D. et al. A nine-miRNA signature as a potential diagnostic marker for breast carcinoma: an integrated study of 1,110 cases. Oncol. Rep. 37, 3297–3304 (2017).


Google Scholar
 

Jang, J. Y. et al. Multiple microRNAs as biomarkers for early breast cancer diagnosis. Mol. Clin. Oncol. 14, 1-1 (2021).

Nadal, E. et al. A novel serum 4-microRNA signature for lung cancer detection. Sci. Rep. 5, 12464 (2015).


Google Scholar
 

Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).


Google Scholar
 

Roush, S. & Slack, F. J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008).


Google Scholar
 

Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).


Google Scholar
 

Büssing, I. & Slack, F. J. & Großhans, H. let-7 microRNAs in development, stem cells and cancer. Trends Mol. Med. 14, 400–409 (2008).


Google Scholar
 

Boyerinas, B., Park, S.-M., Hau, A., Murmann, A. E. & Peter, M. E. The role of let-7 in cell differentiation and cancer. Endocr.-Relat. Cancer 17, F19–F36 (2010).


Google Scholar
 

Zhang, W.-T., Zhang, G.-X. & Gao, S.-S. The potential diagnostic accuracy of let-7 family for cancer: a meta-analysis. Technol. Cancer Res. Treat. 20, 15330338211033061 (2021).


Google Scholar
 

Androvic, P., Valihrach, L., Elling, J., Sjoback, R. & Kubista, M. Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res. 45, e144–e144 (2017).


Google Scholar
 

Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).


Google Scholar
 

Chandradoss, S. D. et al. Surface passivation for single-molecule protein studies. J. Vis. Exp. 86, e50549 (2014).

Ma, H., Xu, J. & Liu, Y. WindSTORM: Robust online image processing for high-throughput nanoscopy. Sci. Adv. 5, eaaw0683 (2019).


Google Scholar
 

Fazekas, F. J., Shaw, T. R., Kim, S., Bogucki, R. A. & Veatch, S. L. A mean shift algorithm for drift correction in localization microscopy. Biophys. Rep. 1 (2021)

White, D. S., Goldschen-Ohm, M. P., Goldsmith, R. H. & Chanda, B. Top-down machine learning approach for high-throughput single-molecule analysis. Elife 9, e53357 (2020).


Google Scholar