Piatak, M. Jr. et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259, 1749–1754 (1993).
Yoshioka, K. et al. Detection of hepatitis C virus by polymerase chain reaction and response to interferon-alpha therapy: relationship to genotypes of hepatitis C virus. Hepatology 16, 293–299 (1992).
Wang, D. et al. Clinical characteristics of 138 Hospitalized patients with 2019 Novel Coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).
Pao, C. C. et al. Detection and identification of Mycobacterium tuberculosis by DNA amplification. J. Clin. Microbiol. 28, 1877–1880 (1990).
Ma, L. et al. Liquid biopsy in cancer current: status, challenges and future prospects. Signal Transduct. Target. Ther. 9, 336 (2024).
Cescon, D. W., Bratman, S. V., Chan, S. M. & Siu, L. L. Circulating tumor DNA and liquid biopsy in oncology. Nat. Cancer 1, 276–290 (2020).
Dheda, K. et al. Multidrug-resistant tuberculosis. Nat. Rev. Dis. Prim. 10, 22 (2024).
Theron, G. et al. Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial. Lancet 383, 424–435 (2014).
World Health Organization. Automated Real-time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children: Policy Update (World Health Organization, 2013).
Macesic, N., Uhlemann, A.-C. & Peleg, A. Y. Multidrug-resistant Gram-negative bacterial infections. Lancet 405, 257–272 (2025).
Deveson, I. W. et al. Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nat. Biotechnol. 39, 1115–1128 (2021).
McDonald, B. R. et al. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci. Transl. Med. 11, eaax7392 (2019).
Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4, 136ra168–136ra168 (2012).
Gilboa, T., Garden, P. M. & Cohen, L. Single-molecule analysis of nucleic acid biomarkers—a review. Analytica Chim. acta 1115, 61–85 (2020).
Johnson-Buck, A. et al. Kinetic fingerprinting to identify and count single nucleic acids. Nat. Biotechnol. 33, 730–732 (2015).
Shin, S. et al. Quantification of purified endogenous miRNAs with high sensitivity and specificity. Nat. Commun. 11, 6033 (2020).
Kim, J., Kang, C., Shin, S. & Hohng, S. Rapid quantification of miRNAs using dynamic FRET-FISH. Commun. Biol. 5, 1072 (2022).
Shin, S. et al. Fast, sensitive, and specific multiplexed single-molecule detection of circulating tumor DNA. Biosens. Bioelectron. 242, 115694 (2023).
Hayward, S. L. et al. Ultraspecific and amplification-free quantification of mutant DNA by single-molecule kinetic fingerprinting. J. Am. Chem. Soc. 140, 11755–11762 (2018).
Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. methods 11, 313–318 (2014).
Condrat, C. E. et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9, 276 (2020).
O’Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402 (2018).
Nakamura, K. et al. An exosome-based transcriptomic signature for noninvasive, early detection of patients with pancreatic ductal adenocarcinoma: a multicenter cohort study. Gastroenterology 163, 1252–1266. e1252 (2022).
Xiong, D. D. et al. A nine-miRNA signature as a potential diagnostic marker for breast carcinoma: an integrated study of 1,110 cases. Oncol. Rep. 37, 3297–3304 (2017).
Jang, J. Y. et al. Multiple microRNAs as biomarkers for early breast cancer diagnosis. Mol. Clin. Oncol. 14, 1-1 (2021).
Nadal, E. et al. A novel serum 4-microRNA signature for lung cancer detection. Sci. Rep. 5, 12464 (2015).
Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).
Roush, S. & Slack, F. J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008).
Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).
Büssing, I. & Slack, F. J. & Großhans, H. let-7 microRNAs in development, stem cells and cancer. Trends Mol. Med. 14, 400–409 (2008).
Boyerinas, B., Park, S.-M., Hau, A., Murmann, A. E. & Peter, M. E. The role of let-7 in cell differentiation and cancer. Endocr.-Relat. Cancer 17, F19–F36 (2010).
Zhang, W.-T., Zhang, G.-X. & Gao, S.-S. The potential diagnostic accuracy of let-7 family for cancer: a meta-analysis. Technol. Cancer Res. Treat. 20, 15330338211033061 (2021).
Androvic, P., Valihrach, L., Elling, J., Sjoback, R. & Kubista, M. Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res. 45, e144–e144 (2017).
Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).
Chandradoss, S. D. et al. Surface passivation for single-molecule protein studies. J. Vis. Exp. 86, e50549 (2014).
Ma, H., Xu, J. & Liu, Y. WindSTORM: Robust online image processing for high-throughput nanoscopy. Sci. Adv. 5, eaaw0683 (2019).
Fazekas, F. J., Shaw, T. R., Kim, S., Bogucki, R. A. & Veatch, S. L. A mean shift algorithm for drift correction in localization microscopy. Biophys. Rep. 1 (2021)
White, D. S., Goldschen-Ohm, M. P., Goldsmith, R. H. & Chanda, B. Top-down machine learning approach for high-throughput single-molecule analysis. Elife 9, e53357 (2020).