Lynch, A. J. et al. People need freshwater biodiversity. WIREs Water 10, e1633 (2023).
WWF. Living Planet Report 2024 — A System in Peril (WWF, 2024).
Urban, M. C. Climate change extinctions. Science 386, 1123–1128 (2024).
Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020).
Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2018).
He, F. et al. Hydropower impacts on riverine biodiversity. Nat. Rev. Earth Environ. 5, 755–772 (2024).
Datry, T. et al. Non-perennial segments in river networks. Nat. Rev. Earth Environ. 4, 815–830 (2023).
Blöschl et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).
Blöschl et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).
Tramblay, Y. et al. Trends in flow intermittence for European rivers. Hydrol. Sci. J. 66, 37–49 (2020).
Zipper, S. C. et al. Pervasive changes in stream intermittency across the United States. Environ. Res. Lett. 16, 084033 (2021).
Gudmundsson, L. et al. Globally observed trends in mean and extreme river flow attributed to climate change. Science 371, 1159–1162 (2021).
Tassone, S. J. et al. Increasing heatwave frequency in streams and rivers of the United States. Limnol. Oceanogr. Lett. 8, 295–304 (2022).
Burrell, B. C., Beltaos, S. & Turcotte, B. Effects of climate change on river-ice processes and ice jams. Int. J. River Basin Manag. 21, 421–441 (2022).
McPhillips, L. E. et al. Defining extreme events: a cross-disciplinary review. Earth’s Future 6, 441–455 (2018).
Mahecha, M. D. et al. Biodiversity and climate extremes: known interactions and research gaps. Earth’s Future 12, e2023EF003963 (2024).
Poff, N. L. et al. Extreme streams: species persistence and genomic change in montane insect populations across a flooding gradient. Ecol. Lett. 21, 525–535 (2018).
Sabater, S. et al. Extreme weather events threaten biodiversity and functions of river ecosystems: evidence from a meta-analysis. Biol. Rev. 98, 450–461 (2022).
Braz-Mota, S. & Luis Val, A. Fish mortality in the Amazonian drought of 2023: the role of experimental biology in our response to climate change. J. Exp. Biol. 227, jeb247255 (2024).
Tassone, S. J., Kelly, M. C., Beidler, O. N., Pace, M. L. & Marcarelli, A. M. Impacts of riverine heatwaves on rates of ecosystem metabolism in the United States. Limnol. Oceanogr. Lett. 10, 464–472 (2025).
Milly, P. C. D. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).
Tonkin, J. D. et al. Prepare river ecosystems for an uncertain future. Nature 570, 301–303 (2019).
Katz, R. W., Parlange, M. B. & Naveau, P. Statistics of extremes in hydrology. Adv. Water Resour. 25, 1287–1304 (2002).
Milly, P. C. D., Wetherald, R. T., Dunne, K. A. & Delworth, T. L. Increasing risk of great floods in a changing climate. Nature 415, 514–517 (2002).
Ledger, M. E. & Milner, A. M. Extreme events in running waters. Freshw. Biol. 60, 2455–2460 (2015).
Smith, M. D. et al. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).
Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).
Paul, M. J. et al. Wildfire induces changes in receiving waters: a review with considerations for water quality management. Water Resour. Res. 58, 1–28 (2022).
Ball, G., Regier, P., González-Pinzón, R., Reale, J. & Van Horn, D. Wildfires increasingly impact western US fluvial networks. Nat. Commun. 12, 2484 (2021).
Dahm, C. N., Candelaria-Ley, R. I., Reale, C. S., Reale, J. K. & Van Horn, D. J. Extreme water quality degradation following a catastrophic forest fire. Freshw. Biol. 60, 2584–2599 (2015).
Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).
Bastos, A. et al. A joint framework for studying compound ecoclimatic events. Nat. Rev. Earth Environ. 4, 333–350 (2023).
Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).
Gergel, D. R., Nijssen, B., Abatzoglou, J. T., Lettenmaier, D. P. & Stumbaugh, M. R. Effects of climate change on snowpack and fire potential in the western USA. Clim. Change 141, 287–299 (2017).
Woodward, G. et al. The effects of climatic fluctuations and extreme events on running water ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150274 (2016).
Giller, P. S., Sangpradub, N. & Twomey, H. Catastrophic flooding and macroinvertebrate community structure. SIL. Proc. 1922–2010 24, 1724–1729 (1991).
Bogan, M. T. & Lytle, D. A. Severe drought drives novel community trajectories in desert stream pools: drought causes community regime shifts. Freshw. Biol. 56, 2070–2081 (2011).
Gutiérrez-Fonseca, P. E., Pringle, C. M., RamÃrez, A., Gómez, J. E. & GarcÃa, P. Hurricane disturbance drives trophic changes in neotropical mountain stream food webs. Ecology 105, e4202 (2023).
Aspin, T. W. H. et al. Extreme drought pushes stream invertebrate communities over functional thresholds. Glob. Change Biol. 25, 230–244 (2018).
Colls, M., Timoner, X., Font, C., Sabater, S. & Acuña, V. Effects of duration, frequency, and severity of the non-flow period on stream biofilm metabolism. Ecosystems 22, 1393–1405 (2019).
Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. N. Phytol. 160, 21–42 (2003).
Blondel, L., Paterson, I. G., Bentzen, P. & Hendry, A. P. Resistance and resilience of genetic and phenotypic diversity to ‘black swan’ flood events: a retrospective analysis with historical samples of guppies. Mol. Ecol. 30, 1017–1028 (2021).
Grant, P. R. et al. Evolution caused by extreme events. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160146 (2017).
Lytle, D. A. & Poff, N. L. Adaptation to natural flow regimes. Trends Ecol. Evol. 19, 94–100 (2004).
Hernández-Carrasco, D., Tylianakis, J. M., Lytle, D. A. & Tonkin, J. D. Ecological and evolutionary consequences of changing seasonality. Science 388, eads4880 (2025).
Lytle, D. A. Disturbance regimes and life-history evolution. Am. Nat. 157, 525–536 (2001).
Lytle, D. A., Bogan, M. T. & Finn, D. S. Evolution of aquatic insect behaviours across a gradient of disturbance predictability. Proc. R. Soc. B Biol. Sci. 275, 453–462 (2007).
Woodward, G., Bonada, N., Feeley, H. B. & Giller, P. S. Resilience of a stream community to extreme climatic events and long-term recovery from a catastrophic flood. Freshw. Biol. 60, 2497–2510 (2015).
Marino, A., Fenoglio, S. & Bo, T. The impact of catastrophic floods on macroinvertebrate communities in low-order streams: a study from the Apennines (Northwest Italy). Water 16, 2646 (2024).
Chessman, B. C. Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biol. Conserv. 160, 40–49 (2013).
Stubbington, R. & Datry, T. The macroinvertebrate seedbank promotes community persistence in temporary rivers across climate zones. Freshw. Biol. 58, 1202–1220 (2013).
Hay, S. E., Jenkins, K. M. & Kingsford, R. T. Diverse invertebrate fauna using dry sediment as a refuge in semi-arid and temperate Australian rivers. Hydrobiologia 806, 95–109 (2017).
Mouthon, J. & Daufresne, M. Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saône: a large lowland river and of its two main tributaries (France). Glob. Change Biol. 12, 441–449 (2006).
Whitney, J. E. et al. Physiological basis of climate change impacts on North American inland fishes. Fisheries 41, 332–345 (2016).
Hladyz, S., Watkins, S. C., Whitworth, K. L. & Baldwin, D. S. Flows and hypoxic blackwater events in managed ephemeral river channels. J. Hydrol. 401, 117–125 (2011).
Whitworth, K. L., Baldwin, D. S. & Kerr, J. L. Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray–Darling Basin, Australia). J. Hydrol. 450–451, 190–198 (2012).
Piniewski, M. et al. Hydrological modelling of the Vistula and Odra river basins using SWAT. Hydrol. Sci. J. 62, 1266–1289 (2017).
Death, R. G., Fuller, I. C. & Macklin, M. G. Resetting the river template: the potential for climate-related extreme floods to transform river geomorphology and ecology. Freshw. Biol. 60, 2477–2496 (2015).
Reich, P. & Lake, P. S. Extreme hydrological events and the ecological restoration of flowing waters. Freshw. Biol. 60, 2639–2652 (2014).
Tabi, A., Siqueira, T. & Tonkin, J. D. Species interactions drive continuous assembly of freshwater communities in stochastic environments. Sci. Rep. 12, 21747 (2023).
Larimore, R. W., Childers, W. F. & Heckrotte, C. Destruction and re-establishment of stream fish and invertebrates affected by drought. Trans. Am. Fish. Soc. 88, 261–285 (1959).
Cowx, I. G., Young, W. O. & Hellawell, J. M. The influence of drought on the fish and invertebrate populations of an upland stream in Wales. Freshw. Biol. 14, 165–177 (1984).
Morrison, B. R. S. Recolonisation of four small streams in central Scotland following drought conditions in 1984. Hydrobiologia 208, 261–267 (1990).
Caruso, B. S. Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago, New Zealand. J. Hydrol. 257, 115–133 (2002).
Nico, L. G., Williams, D. & Jelks, H. L. Black Carp: Biological Synopsis and Risk Assessment of an Introduced Fish (American Fisheries Society, 2005).
Tucker, J. K., Cronin, F. A., Soergel, D. W. & Theiling, C. H. Predation on zebra mussels (Dreissena polymorpha) by common carp (Cyprinus carpio). J. Freshw. Ecol. 11, 363–372 (1996).
Schultz, A. A., Maughan, O. E., Bonar, S. A. & Matter, W. J. Effects of flooding on abundance of native and nonnative fishes downstream from a small impoundment. North Am. J. Fish. Manag. 23, 503–511 (2003).
Diez, J. M. et al. Will extreme climatic events facilitate biological invasions? Front. Ecol. Environ. 10, 249–257 (2012).
Sorte, C. J. B. et al. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol. Lett. 16, 261–270 (2012).
Gido, K. B. et al. Pockets of resistance: response of arid-land fish communities to climate, hydrology, and wildfire. Freshw. Biol. 64, 761–777 (2019).
RuhÃ, A., Holmes, E. E., Rinne, J. N. & Sabo, J. L. Anomalous droughts, not invasion, decrease persistence of native fishes in a desert river. Glob. Change Biol. 21, 1482–1496 (2014).
Stromberg, J. Dynamics of Fremont cottonwood (Populus fremontii) and saltcedar (Tamarix chinensis) populations along the San Pedro River, Arizona. J. Arid. Environ. 40, 133–155 (1998).
Carneiro, L. et al. Typology of the ecological impacts of biological invasions. Trends Ecol. Evol. 40, 563–574 (2025).
Daufresne, M., Bady, P. & Fruget, J.-F. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia 151, 544–559 (2007).
Rahel, F. J. & Olden, J. D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22, 521–533 (2008).
Magoulick, D. D. & Kobza, R. M. The role of refugia for fishes during drought: a review and synthesis. Freshw. Biol. 48, 1186–1198 (2003).
Labbe, T. R. & Fausch, K. D. Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scales. Ecol. Appl. 10, 1774 (2000).
Lennox, R. S. et al. Introduced trout hinder the recovery of native fish following an extreme flood disturbance. Preprint at BioRxiv https://doi.org/10.1101/2024.09.05.611377 (2024).
Leprieur, F. et al. Hydrological disturbance benefits a native fish at the expense of an exotic fish. J. Appl. Ecol. 43, 930–939 (2006).
Hore, O. R., Tonkin, J., Boddy, N. C. & McIntosh, A. Flow matters: unravelling the interactive influences of flow alterations and non-native trout on vulnerable galaxiids. River Res. Appl. 41, 1131–1142 (2025).
Lake, P. S. Ecological effects of perturbation by drought in flowing waters. Freshw. Biol. 48, 1161–1172 (2003).
Myers, B. J. E. et al. The effects of flow extremes on native and non-native stream fishes in Puerto Rico. Freshw. Biol. 69, 1292–1306 (2024).
Larson, E. I., Poff, N. L., Atkinson, C. L. & Flecker, A. S. Extreme flooding decreases stream consumer autochthony by increasing detrital resource availability. Freshw. Biol. 63, 1483–1497 (2018).
Sarremejane, R. et al. Drying and fragmentation drive the dynamics of resources, consumers and ecosystem functions across aquatic-terrestrial habitats in a river network. Oikos 2024, e10135 (2024).
Gessner, M. O., Chauvet, E. & Dobson, M. A perspective on leaf litter breakdown in streams. Oikos 85, 377 (1999).
Corti, R. & Datry, T. Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France). Freshw. Sci. 31, 1187–1201 (2012).
Jacobson, P. J. & Jacobson, K. M. Hydrologic controls of physical and ecological processes in Namib Desert ephemeral rivers: implications for conservation and management. J. Arid Environ. 93, 80–93 (2013).
Glazebrook, H. S. & Robertson, A. I. The effect of flooding and flood timing on leaf litter breakdown rates and nutrient dynamics in a river red gum (Eucalyptus camaldulensis) forest. Aust. J. Ecol. 24, 625–635 (1999).
Chauvet, E. Leaf litter decomposition in large rivers: the case of the River Garonne. Limnetica 13, 65–70 (1997).
Langhans, S. D. & Tockner, K. The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147, 501–509 (2005).
Bernal, S., von, Schiller, D., Sabater, F. & MartÃ, E. Hydrological extremes modulate nutrient dynamics in Mediterranean climate streams across different spatial scales. Hydrobiologia 719, 31–42 (2012).
del Campo, R., Foulquier, A., Singer, G. & Datry, T. in The Ecology of Plant Litter Decomposition in Stream Ecosystems (eds Swan, C. M. et al.) 73–100 (Springer International, 2021).
Corti, R., Datry, T., Drummond, L. & Larned, S. T. Natural variation in immersion and emersion affects breakdown and invertebrate colonization of leaf litter in a temporary river. Aquat. Sci. 73, 537–550 (2011).
Datry, T. et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat. Geosci. 11, 497–503 (2018).
Datry, T., Corti, R., Claret, C. & Philippe, M. Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the ‘drying memory’. Aquat. Sci. 73, 471–483 (2011).
Pinna, M. et al. Influence of aperiodic summer droughts on leaf litter breakdown and macroinvertebrate assemblages: testing the drying memory in a Central Apennines River (Aterno River, Italy). Hydrobiologia 782, 111–126 (2016).
Di Sabatino, A., Coscieme, L. & Cristiano, G. Effects of antecedent drying events on structure, composition and functional traits of invertebrate assemblages and leaf-litter breakdown in a former perennial river of Central Apennines (Aterno River, Abruzzo, Central Italy). Ecohydrology 15, e2358 (2021).
Gómez-Gener, L., Lupon, A., Laudon, H. & Sponseller, R. A. Drought alters the biogeochemistry of boreal stream networks. Nat. Commun. 11, 1795 (2020).
Acuña, V., Giorgi, A., Muñoz, I., Uehlinger, U. & Sabater, S. Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshw. Biol. 49, 960–971 (2004).
Ferreira, V. & Canhoto, C. Future increase in temperature may stimulate litter decomposition in temperate mountain streams: evidence from a stream manipulation experiment. Freshw. Biol. 60, 881–892 (2015).
Pérez, J., Correa-Araneda, F., López-Rojo, N., Basaguren, A. & Boyero, L. Extreme temperature events alter stream ecosystem functioning. Ecol. Indic. 121, 106984 (2021).
Battin, T. J. et al. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature 613, 449–459 (2023).
López-Rojo, N. et al. Alternating drying and flowing phases control stream metabolism through short- and long-term effects: insights from a river network. J. Geophys. Res. Biogeosci. 130, e2024JG008369 (2025).
Piano, E. et al. If Alpine streams run dry: the drought memory of benthic communities. Aquat. Sci. 81, 32 (2019).
Crabot, J., Heino, J., Launay, B. & Datry, T. Drying determines the temporal dynamics of stream invertebrate structural and functional beta diversity. Ecography 43, 620–635 (2019).
Vander Vorste, R., Obedzinski, M., Nossaman Pierce, S., Carlson, S. M. & Grantham, T. E. Refuges and ecological traps: extreme drought threatens persistence of an endangered fish in intermittent streams. Glob. Change Biol. 26, 3834–3845 (2020).
Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).
Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).
Van Looy, K. et al. The three Rs of river ecosystem resilience: resources, recruitment, and refugia. River Res. Appl. 35, 107–120 (2019).
Bogan, M. T., Boersma, K. S. & Lytle, D. A. Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an arid-land stream network. Freshw. Biol. 58, 1016–1028 (2013).
Chester, E. T. & Robson, B. J. Anthropogenic refuges for freshwater biodiversity: their ecological characteristics and management. Biol. Conserv. 166, 64–75 (2013).
Vander Vorste, R., Malard, F. & Datry, T. Is drift the primary process promoting the resilience of river invertebrate communities? A manipulative field experiment in an intermittent alluvial river. Freshw. Biol. 61, 1276–1292 (2015).
Priest, H. J. & Finn, D. S. Bucketloads of aquatic invertebrates in a dry intermittent stream. Ecology 104, e3936 (2023).
Kawanishi, R., Inoue, M., Dohi, R., Fujii, A. & Miyake, Y. The role of the hyporheic zone for a benthic fish in an intermittent river: a refuge, not a graveyard. Aquat. Sci. 75, 425–431 (2013).
Padial, A. A. et al. The role of an extreme flood disturbance on macrophyte assemblages in a Neotropical floodplain. Aquat. Sci. 71, 389–398 (2009).
McCann, K. S., Rasmussen, J. B. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).
Siqueira, T. et al. Understanding temporal variability across trophic levels and spatial scales in freshwater ecosystems. Ecology 105, e4219 (2023).
Ross, S. R. P.-J. et al. Predators mitigate the destabilising effects of heatwaves on multitrophic stream communities. Glob. Change Biol. 28, 403–416 (2021).
Parsons, M., McLoughlin, C. A., Kotschy, K. A., Rogers, K. H. & Rountree, M. W. The effects of extreme floods on the biophysical heterogeneity of river landscapes. Front. Ecol. Environ. 3, 487 (2005).
Eagle, L. J. B. et al. Extreme flood disturbance effects on multiple dimensions of river invertebrate community stability. J. Anim. Ecol. 90, 2135–2146 (2021).
Lyu, J. et al. Extreme drought–heatwave events threaten the biodiversity and stability of aquatic plankton communities in the Yangtze River ecosystems. Commun. Earth Environ. 6, 171 (2025).
Sheldon, F. et al. Assessment of the causes and solutions to the significant 2018–19 fish deaths in the Lower Darling River, New South Wales, Australia. Mar. Freshw. Res. 73, 147–158 (2021).
Absalon, D., Matysik, M., Woźnica, A. & Janczewska, N. Detection of changes in the hydrobiological parameters of the Oder River during the ecological disaster in July 2022 based on multi-parameter probe tests and remote sensing methods. Ecol. Indic. 148, 110103 (2023).
Kennedy, T. A. et al. Flow management for hydropower extirpates aquatic insects, undermining river food webs. BioScience 66, 561–575 (2016).
Abernethy, E. F. et al. Hydropeaking intensity and dam proximity limit aquatic invertebrate diversity in the Colorado River Basin. Ecosphere 12, e03559 (2021).
Datry, T. et al. Causes, responses, and implications of anthropogenic versus natural flow intermittence in river networks. BioScience 73, 9–22 (2022).
Gido, K. B., Osborne, M. J., Propst, D. L., Turner, T. F. & Olden, J. D. Megadroughts pose mega-risk to native fishes of the American southwest. Fisheries 48, 204–214 (2023).
Robertson, A. L., Brown, L. E., Klaar, M. J. & Milner, A. M. Stream ecosystem responses to an extreme rainfall event across multiple catchments in southeast Alaska. Freshw. Biol. 60, 2523–2534 (2015).
Polazzo, F. et al. Combined effects of heatwaves and micropollutants on freshwater ecosystems: towards an integrated assessment of extreme events in multiple stressors research. Glob. Change Biol. 28, 1248–1267 (2021).
Dietze, M. C. Prediction in ecology: a first-principles framework. Ecol. Appl. 27, 2048–2060 (2017).
Johnson, T. F. et al. Revealing uncertainty in the status of biodiversity change. Nature 628, 788–794 (2024).
Perkins, S. E. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).
Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).
van Hamel, A. & Brunner, M. I. Trends and drivers of water temperature extremes in mountain rivers. Water Resour. Res. 60, e2024WR037518 (2024).
Bardsley, E. & Vetrova, V. The bounded inverse Weibull distribution: an extreme value alternative for application to environmental maxima? Watershed Ecol. Environ. 3, 57–63 (2021).
Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. Fast calibrated additive quantile regression. J. Am. Stat. Assoc. 116, 1402–1412 (2020).
Olivetti, L., Messori, G. & Jin, S. A quantile generalized additive approach for compound climate extremes: pan-Atlantic extremes as a case study. J. Adv. Model. Earth Syst. 16, e2023MS003753 (2024).
Rigby, R., Stasinopoulos, D. & Voudouris, V. Discussion: a comparison of GAMLSS with quantile regression. Stat. Model. 13, 335–348 (2013).
King, G. & Zeng, L. Logistic regression in rare events data. Polit. Anal. 9, 137–163 (2001).
Rigby, R. A. & Stasinopoulos, D. M. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C Appl. Stat. 54, 507–554 (2005).
Merder, J. et al. Geographic redistribution of microcystin hotspots in response to climate warming. Nat. Water 1, 844–854 (2023).
Rigby, R. A., Stasinopoulos, M. D., Heller, G. Z. & De Bastiani, F. Distributions for Modeling Location, Scale, and Shape: Using GAMLSS in R (Chapman and Hall/CRC, 2019).
Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).
Lewis, A. S. L. et al. The power of forecasts to advance ecological theory. Methods Ecol. Evol. 14, 746–756 (2022).
Pearl, J., Glymour, M. & Jewel, N. Causal Inference in Statistics: A Primer (John Wiley & Sons, 2016).
Kimmel, K., Dee, L. E., Avolio, M. L. & Ferraro, P. J. Causal assumptions and causal inference in ecological experiments. Trends Ecol. Evol. 36, 1141–1152 (2021).
Siegel, K. & Dee, L. Foundations and future directions for causal inference in ecological research. Ecol. Lett. 28, e70053 (2025).
Lytle, D. A. & Tonkin, J. D. Matrix community models for ecology and evolution. npj Biodivers. 2, 26 (2023).
Tonkin, J. D., Merritt, D. M., Olden, J. D., Reynolds, L. V. & Lytle, D. A. Flow regime alteration degrades ecological networks in riparian ecosystems. Nat. Ecol. Evol. 2, 86–93 (2017).
Rogosch, J. S. et al. Increasing drought favors nonnative fishes in a dryland river: evidence from a multispecies demographic model. Ecosphere 10, e02681 (2019).
Ohlberger, J. et al. Effects of past and projected river discharge variability on freshwater production in an anadromous fish. Freshw. Biol. 63, 331–340 (2018).
Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).
Ibáñez, I. et al. Integrated assessment of biological invasions. Ecol. Appl. 24, 25–37 (2014).
Evans, M. E. K., Merow, C., Record, S., McMahon, S. M. & Enquist, B. J. Towards process-based range modeling of many species. Trends Ecol. Evol. 31, 860–871 (2016).
Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).
Koerich, G., Fraser, C. I., Lee, C. K., Morgan, F. J. & Tonkin, J. D. Forecasting the future of life in Antarctica. Trends Ecol. Evol. 38, 24–34 (2023).
Schaub, M. & Abadi, F. Integrated population models: a novel analysis framework for deeper insights into population dynamics. J. Ornithol. 152, 227–237 (2010).
González, E. J., Martorell, C. & Bolker, B. M. Inverse estimation of integral projection model parameters using time series of population-level data. Methods Ecol. Evol. 7, 147–156 (2016).
Arthington, A. H. et al. Accelerating environmental flow implementation to bend the curve of global freshwater biodiversity loss. Environ. Rev. 32, 387–413 (2024).
Messager, M. L. et al. A metasystem approach to designing environmental flows. BioScience 73, 643–662 (2023).
Grantham, T. E., Matthews, J. H. & Bledsoe, B. P. Shifting currents: managing freshwater systems for ecological resilience in a changing climate. Water Secur. 8, 100049 (2019).
Ciotti, D. C., Mckee, J., Pope, K. L., Kondolf, G. M. & Pollock, M. M. Design criteria for process-based restoration of fluvial systems. BioScience 71, 831–845 (2021).
McCabe, C. L., Matthaei, C. D. & Tonkin, J. D. The ecological benefits of more room for rivers. Nat. Water 3, 260–270 (2025).
Naiman, R. J., Latterell, J. J., Pettit, N. E. & Olden, J. D. Flow variability and the biophysical vitality of river systems. Comptes Rendus Géosci. 340, 629–643 (2008).
Palmer, M. A., Hondula, K. L. & Koch, B. J. Ecological restoration of streams and rivers: shifting strategies and shifting goals. Annu. Rev. Ecol. Evol. Syst. 45, 247–269 (2014).
Beechie, T. J. et al. Process-based principles for restoring river ecosystems. BioScience 60, 209–222 (2010).
Backus, G. A., Clements, C. F. & Baskett, M. L. Restoring spatiotemporal variability to enhance the capacity for dispersal-limited species to track climate change. Ecology 105, e4257 (2024).
da Silva, J. P. et al. The role of connectivity in conservation planning for species with obligatory interactions: prospects for future climate scenarios. Glob. Change Biol. 30, e17169 (2024).
Mason, R. J. et al. Rebalancing river lateral connectivity: an interdisciplinary focus for research and management. WIREs Water 12, e1766 (2024).
Cid, N. et al. From meta-system theory to the sustainable management of rivers in the Anthropocene. Front. Ecol. Environ. 20, 49–57 (2021).
Craig, L. S. et al. Meeting the challenge of interacting threats in freshwater ecosystems: a call to scientists and managers. Elem. Sci. Anthr. 5, 72 (2017).
Mouquet, N., Gravel, D., Massol, F. & Calcagno, V. Extending the concept of keystone species to communities and ecosystems. Ecol. Lett. 16, 1–8 (2012).
Patrick, C. J. et al. The application of metacommunity theory to the management of riverine ecosystems. WIREs Water 8, 1–21 (2021).
Lynch, A. J. et al. Managing for RADical ecosystem change: applying the Resist–Accept–Direct (RAD) framework. Front. Ecol. Environ. 19, 461–469 (2021).
Olsson, R. C., Wyborn, C. A. & van Kerkhoff, L. E. How the Resist–Accept–Direct framework is being used by communities for socio-economic climate adaptation: a case study in Australia’s Murray–Darling Basin. Reg. Environ. Change 24, 136 (2024).
Grupper, M. A., Horne, A. C., Webb, J. A. & Olden, J. Identifying and approaching barriers to environmental flow implementation using social–ecological systems thinking. WIREs Water 12, e1764 (2025).
Poff, N. L. et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Change 6, 25–34 (2015).
Tonkin, J. D. in Encyclopedia of Inland Waters (eds Mehner, T. & Tockner, K.) 653–664 (Elsevier, 2022).
Kuehne, L. M. et al. The future of global river health monitoring. PLoS Water 2, e0000101 (2023).
Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
Tomsett, C. & Leyland, J. Remote sensing of river corridors: a review of current trends and future directions. River Res. Appl. 35, 779–803 (2019).
Pawlowski, J. et al. The future of biotic indices in the ecogenomic era: integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci. Total Environ. 637–638, 1295–1310 (2018).
Krabbenhoft, C. A. et al. Assessing placement bias of the global river gauge network. Nat. Sustain. 5, 586–592 (2022).
Milner, A. M., Robertson, A. L., McDermott, M. J., Klaar, M. J. & Brown, L. E. Major flood disturbance alters river ecosystem evolution. Nat. Clim. Change 3, 137–141 (2012).
Tiegs, S. D. et al. Human activities shape global patterns of decomposition rates in rivers. Science 384, 1191–1195 (2024).
Smith, M. D. et al. Extreme drought impacts have been underestimated in grasslands and shrublands globally. Proc. Natl Acad. Sci. USA 121, e2309881120 (2024).
Stecca, G., Hicks, D. M., Measures, R. & Henderson, R. Numerical modeling prediction of vegetation trajectories under different flow regimes in New Zealand braided rivers. J. Geophys. Res. Earth Surf. 128, e2023JF007397 (2023).
Harris, H. A. L., Tonkin, J. D. & McIntosh, A. R. in Resilience and Riverine Landscapes (eds Thoms, M. & Fuller, I.) 157–175 (Elsevier, 2024).
Wohl, E., Dwire, K., Sutfin, N., Polvi, L. & Bazan, R. Mechanisms of carbon storage in mountainous headwater rivers. Nat. Commun. 3, 1263 (2012).
Mahecha, M. D. et al. Biodiversity loss and climate extremes — study the feedbacks. Nature 612, 30–32 (2022).
Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).
Feeley, H. B., Davis, S., Bruen, M., Blacklocke, S. & Kelly-Quinn, M. The impact of a catastrophic storm event on benthic macroinvertebrate communities in upland headwater streams and potential implications for ecological diversity and assessment of ecological status. J. Limnol. 71, 109–318 (2012).
Foord, S. & Fouché, P. Response of instream animal communities to a short-term extreme event and to longer-term cumulative impacts in a strategic water resource area, South Africa. Afr. J. Aquat. Sci. 41, 29–40 (2016).
Kim, D. G., Yoon, T. J., Baek, M. J. & Bae, Y. J. Impact of rainfall intensity on benthic macroinvertebrate communities in a mountain stream under the East Asian monsoon climate. J. Freshw. Ecol. 33, 489–501 (2018).
Herbst, D. B., Cooper, S. D., Medhurst, R. B., Wiseman, S. W. & Hunsaker, C. T. Drought ecohydrology alters the structure and function of benthic invertebrate communities in mountain streams. Freshw. Biol. 64, 886–902 (2019).
Calapez, A. R., Elias, C. L., Almeida, S. F. P. & Feio, M. J. Extreme drought effects and recovery patterns in the benthic communities of temperate streams. Limnetica 33, 281–296 (2014).
Fenoglio, S., Bo, T., Cucco, M. & Malacarne, G. Response of benthic invertebrate assemblages to varying drought conditions in the Po river (NW Italy). Ital. J. Zool. 74, 191–201 (2007).
Ferreira, V., Chauvet, E. & Canhoto, C. Effects of experimental warming, litter species, and presence of macroinvertebrates on litter decomposition and associated decomposers in a temperate mountain stream. Can. J. Fish. Aquat. Sci. 72, 206–216 (2015).
Sáinz-Bariáin, M. et al. Changes in Mediterranean high mountain Trichoptera communities after a 20-year period. Aquat. Sci. 78, 669–682 (2015).
Poff, N. L. et al. The natural flow regime. BioScience 47, 769–784 (1997).
Olden, J. D. & Naiman, R. J. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 55, 86–107 (2009).
Stewart, I. T., Cayan, D. R. & Dettinger, M. D. Changes toward earlier streamflow timing across western North America. J. Clim. 18, 1136–1155 (2005).
Wang, H. et al. Anthropogenic climate change has influenced global river flow seasonality. Science 383, 1009–1014 (2024).
Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36, 1033–1050 (2015).
Udall, B. & Overpeck, J. The twenty-first century Colorado River hot drought and implications for the future. Water Resour. Res. 53, 2404–2418 (2017).
Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).
Isaak, D. J., Wollrab, S., Horan, D. & Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Change 113, 499–524 (2011).
van Vliet, M. T. H. et al. Global river discharge and water temperature under climate change. Glob. Environ. Change 23, 450–464 (2013).
Anderson, S. & Chartrand, S. The streamflow response to multi-day warm anomaly events: sensitivity to future warming and spatiotemporal variability by event magnitude. Earth’s Future 12, e2024EF004962 (2024).
Beltaos, S. & Prowse, T. D. Climate impacts on extreme ice-jam events in Canadian rivers. Hydrol. Sci. J. 46, 157–181 (2001).
Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).
Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2012).
Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).
Schindler, D. E., Armstrong, J. B. & Reed, T. E. The portfolio concept in ecology and evolution. Front. Ecol. Environ. 13, 257–263 (2015).
Erős, T. et al. Effects of nonnative species on the stability of riverine fish communities. Ecography 43, 1156–1166 (2020).
Wang, S., Lamy, T., Hallett, L. M. & Loreau, M. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: linking theory to data. Ecography 42, 1200–1211 (2019).
Lamy, T. et al. The dual nature of metacommunity variability. Oikos 130, 2078–2092 (2021).
Gianuca, A. T. et al. River flow intermittence influence biodiversity–stability relationships across spatial scales: implications for an uncertain future. Glob. Change Biol. 30, e17457 (2024).
Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).
Hershkovitz, Y. & Gasith, A. Resistance, resilience, and community dynamics in Mediterranean-climate streams. Hydrobiologia 719, 59–75 (2012).
Larsen, S. et al. The geography of metapopulation synchrony in dendritic river networks. Ecol. Lett. 24, 791–801 (2021).
Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl Acad. Sci. USA 111, 13894–13899 (2014).
Steel, E. A. et al. Thermal landscapes in a changing climate: biological implications of water temperature patterns in an extreme year. Can. J. Fish. Aquat. Sci. 76, 1740–1756 (2019).