Lynch, A. J. et al. People need freshwater biodiversity. WIREs Water 10, e1633 (2023).

Article 

Google Scholar
 

WWF. Living Planet Report 2024 — A System in Peril (WWF, 2024).

Urban, M. C. Climate change extinctions. Science 386, 1123–1128 (2024).

Article 
CAS 

Google Scholar
 

Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020).

Article 

Google Scholar
 

Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2018).

Article 

Google Scholar
 

He, F. et al. Hydropower impacts on riverine biodiversity. Nat. Rev. Earth Environ. 5, 755–772 (2024).

Article 

Google Scholar
 

Datry, T. et al. Non-perennial segments in river networks. Nat. Rev. Earth Environ. 4, 815–830 (2023).

Article 

Google Scholar
 

Blöschl et al. Changing climate shifts timing of European floods. Science 357, 588–590 (2017).

Article 

Google Scholar
 

Blöschl et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

Article 

Google Scholar
 

Tramblay, Y. et al. Trends in flow intermittence for European rivers. Hydrol. Sci. J. 66, 37–49 (2020).

Article 

Google Scholar
 

Zipper, S. C. et al. Pervasive changes in stream intermittency across the United States. Environ. Res. Lett. 16, 084033 (2021).

Article 

Google Scholar
 

Gudmundsson, L. et al. Globally observed trends in mean and extreme river flow attributed to climate change. Science 371, 1159–1162 (2021).

Article 
CAS 

Google Scholar
 

Tassone, S. J. et al. Increasing heatwave frequency in streams and rivers of the United States. Limnol. Oceanogr. Lett. 8, 295–304 (2022).

Article 

Google Scholar
 

Burrell, B. C., Beltaos, S. & Turcotte, B. Effects of climate change on river-ice processes and ice jams. Int. J. River Basin Manag. 21, 421–441 (2022).

Article 

Google Scholar
 

McPhillips, L. E. et al. Defining extreme events: a cross-disciplinary review. Earth’s Future 6, 441–455 (2018).

Article 

Google Scholar
 

Mahecha, M. D. et al. Biodiversity and climate extremes: known interactions and research gaps. Earth’s Future 12, e2023EF003963 (2024).

Article 

Google Scholar
 

Poff, N. L. et al. Extreme streams: species persistence and genomic change in montane insect populations across a flooding gradient. Ecol. Lett. 21, 525–535 (2018).

Article 

Google Scholar
 

Sabater, S. et al. Extreme weather events threaten biodiversity and functions of river ecosystems: evidence from a meta-analysis. Biol. Rev. 98, 450–461 (2022).

Article 

Google Scholar
 

Braz-Mota, S. & Luis Val, A. Fish mortality in the Amazonian drought of 2023: the role of experimental biology in our response to climate change. J. Exp. Biol. 227, jeb247255 (2024).

Article 

Google Scholar
 

Tassone, S. J., Kelly, M. C., Beidler, O. N., Pace, M. L. & Marcarelli, A. M. Impacts of riverine heatwaves on rates of ecosystem metabolism in the United States. Limnol. Oceanogr. Lett. 10, 464–472 (2025).

Article 

Google Scholar
 

Milly, P. C. D. et al. Stationarity is dead: whither water management? Science 319, 573–574 (2008).

Article 
CAS 

Google Scholar
 

Tonkin, J. D. et al. Prepare river ecosystems for an uncertain future. Nature 570, 301–303 (2019).

Article 
CAS 

Google Scholar
 

Katz, R. W., Parlange, M. B. & Naveau, P. Statistics of extremes in hydrology. Adv. Water Resour. 25, 1287–1304 (2002).

Article 

Google Scholar
 

Milly, P. C. D., Wetherald, R. T., Dunne, K. A. & Delworth, T. L. Increasing risk of great floods in a changing climate. Nature 415, 514–517 (2002).

Article 
CAS 

Google Scholar
 

Ledger, M. E. & Milner, A. M. Extreme events in running waters. Freshw. Biol. 60, 2455–2460 (2015).

Article 

Google Scholar
 

Smith, M. D. et al. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).

Article 

Google Scholar
 

Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).

Article 
CAS 

Google Scholar
 

Paul, M. J. et al. Wildfire induces changes in receiving waters: a review with considerations for water quality management. Water Resour. Res. 58, 1–28 (2022).

Article 
CAS 

Google Scholar
 

Ball, G., Regier, P., González-Pinzón, R., Reale, J. & Van Horn, D. Wildfires increasingly impact western US fluvial networks. Nat. Commun. 12, 2484 (2021).

Article 
CAS 

Google Scholar
 

Dahm, C. N., Candelaria-Ley, R. I., Reale, C. S., Reale, J. K. & Van Horn, D. J. Extreme water quality degradation following a catastrophic forest fire. Freshw. Biol. 60, 2584–2599 (2015).

Article 
CAS 

Google Scholar
 

Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

Article 

Google Scholar
 

Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

Article 

Google Scholar
 

Bastos, A. et al. A joint framework for studying compound ecoclimatic events. Nat. Rev. Earth Environ. 4, 333–350 (2023).

Article 

Google Scholar
 

Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).

Article 

Google Scholar
 

Gergel, D. R., Nijssen, B., Abatzoglou, J. T., Lettenmaier, D. P. & Stumbaugh, M. R. Effects of climate change on snowpack and fire potential in the western USA. Clim. Change 141, 287–299 (2017).

Article 

Google Scholar
 

Woodward, G. et al. The effects of climatic fluctuations and extreme events on running water ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150274 (2016).

Article 

Google Scholar
 

Giller, P. S., Sangpradub, N. & Twomey, H. Catastrophic flooding and macroinvertebrate community structure. SIL. Proc. 1922–2010 24, 1724–1729 (1991).

Article 

Google Scholar
 

Bogan, M. T. & Lytle, D. A. Severe drought drives novel community trajectories in desert stream pools: drought causes community regime shifts. Freshw. Biol. 56, 2070–2081 (2011).

Article 

Google Scholar
 

Gutiérrez-Fonseca, P. E., Pringle, C. M., Ramírez, A., Gómez, J. E. & García, P. Hurricane disturbance drives trophic changes in neotropical mountain stream food webs. Ecology 105, e4202 (2023).

Article 

Google Scholar
 

Aspin, T. W. H. et al. Extreme drought pushes stream invertebrate communities over functional thresholds. Glob. Change Biol. 25, 230–244 (2018).

Article 

Google Scholar
 

Colls, M., Timoner, X., Font, C., Sabater, S. & Acuña, V. Effects of duration, frequency, and severity of the non-flow period on stream biofilm metabolism. Ecosystems 22, 1393–1405 (2019).

Article 

Google Scholar
 

Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. N. Phytol. 160, 21–42 (2003).

Article 

Google Scholar
 

Blondel, L., Paterson, I. G., Bentzen, P. & Hendry, A. P. Resistance and resilience of genetic and phenotypic diversity to ‘black swan’ flood events: a retrospective analysis with historical samples of guppies. Mol. Ecol. 30, 1017–1028 (2021).

Article 

Google Scholar
 

Grant, P. R. et al. Evolution caused by extreme events. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160146 (2017).

Article 

Google Scholar
 

Lytle, D. A. & Poff, N. L. Adaptation to natural flow regimes. Trends Ecol. Evol. 19, 94–100 (2004).

Article 

Google Scholar
 

Hernández-Carrasco, D., Tylianakis, J. M., Lytle, D. A. & Tonkin, J. D. Ecological and evolutionary consequences of changing seasonality. Science 388, eads4880 (2025).

Article 

Google Scholar
 

Lytle, D. A. Disturbance regimes and life-history evolution. Am. Nat. 157, 525–536 (2001).

Article 
CAS 

Google Scholar
 

Lytle, D. A., Bogan, M. T. & Finn, D. S. Evolution of aquatic insect behaviours across a gradient of disturbance predictability. Proc. R. Soc. B Biol. Sci. 275, 453–462 (2007).

Article 

Google Scholar
 

Woodward, G., Bonada, N., Feeley, H. B. & Giller, P. S. Resilience of a stream community to extreme climatic events and long-term recovery from a catastrophic flood. Freshw. Biol. 60, 2497–2510 (2015).

Article 

Google Scholar
 

Marino, A., Fenoglio, S. & Bo, T. The impact of catastrophic floods on macroinvertebrate communities in low-order streams: a study from the Apennines (Northwest Italy). Water 16, 2646 (2024).

Article 

Google Scholar
 

Chessman, B. C. Identifying species at risk from climate change: traits predict the drought vulnerability of freshwater fishes. Biol. Conserv. 160, 40–49 (2013).

Article 

Google Scholar
 

Stubbington, R. & Datry, T. The macroinvertebrate seedbank promotes community persistence in temporary rivers across climate zones. Freshw. Biol. 58, 1202–1220 (2013).

Article 

Google Scholar
 

Hay, S. E., Jenkins, K. M. & Kingsford, R. T. Diverse invertebrate fauna using dry sediment as a refuge in semi-arid and temperate Australian rivers. Hydrobiologia 806, 95–109 (2017).

Article 

Google Scholar
 

Mouthon, J. & Daufresne, M. Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saône: a large lowland river and of its two main tributaries (France). Glob. Change Biol. 12, 441–449 (2006).

Article 

Google Scholar
 

Whitney, J. E. et al. Physiological basis of climate change impacts on North American inland fishes. Fisheries 41, 332–345 (2016).

Article 

Google Scholar
 

Hladyz, S., Watkins, S. C., Whitworth, K. L. & Baldwin, D. S. Flows and hypoxic blackwater events in managed ephemeral river channels. J. Hydrol. 401, 117–125 (2011).

Article 
CAS 

Google Scholar
 

Whitworth, K. L., Baldwin, D. S. & Kerr, J. L. Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray–Darling Basin, Australia). J. Hydrol. 450–451, 190–198 (2012).

Article 

Google Scholar
 

Piniewski, M. et al. Hydrological modelling of the Vistula and Odra river basins using SWAT. Hydrol. Sci. J. 62, 1266–1289 (2017).

Article 

Google Scholar
 

Death, R. G., Fuller, I. C. & Macklin, M. G. Resetting the river template: the potential for climate-related extreme floods to transform river geomorphology and ecology. Freshw. Biol. 60, 2477–2496 (2015).

Article 

Google Scholar
 

Reich, P. & Lake, P. S. Extreme hydrological events and the ecological restoration of flowing waters. Freshw. Biol. 60, 2639–2652 (2014).

Article 

Google Scholar
 

Tabi, A., Siqueira, T. & Tonkin, J. D. Species interactions drive continuous assembly of freshwater communities in stochastic environments. Sci. Rep. 12, 21747 (2023).


Google Scholar
 

Larimore, R. W., Childers, W. F. & Heckrotte, C. Destruction and re-establishment of stream fish and invertebrates affected by drought. Trans. Am. Fish. Soc. 88, 261–285 (1959).

Article 

Google Scholar
 

Cowx, I. G., Young, W. O. & Hellawell, J. M. The influence of drought on the fish and invertebrate populations of an upland stream in Wales. Freshw. Biol. 14, 165–177 (1984).

Article 

Google Scholar
 

Morrison, B. R. S. Recolonisation of four small streams in central Scotland following drought conditions in 1984. Hydrobiologia 208, 261–267 (1990).

Article 

Google Scholar
 

Caruso, B. S. Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago, New Zealand. J. Hydrol. 257, 115–133 (2002).

Article 
CAS 

Google Scholar
 

Nico, L. G., Williams, D. & Jelks, H. L. Black Carp: Biological Synopsis and Risk Assessment of an Introduced Fish (American Fisheries Society, 2005).

Tucker, J. K., Cronin, F. A., Soergel, D. W. & Theiling, C. H. Predation on zebra mussels (Dreissena polymorpha) by common carp (Cyprinus carpio). J. Freshw. Ecol. 11, 363–372 (1996).

Article 

Google Scholar
 

Schultz, A. A., Maughan, O. E., Bonar, S. A. & Matter, W. J. Effects of flooding on abundance of native and nonnative fishes downstream from a small impoundment. North Am. J. Fish. Manag. 23, 503–511 (2003).

Article 

Google Scholar
 

Diez, J. M. et al. Will extreme climatic events facilitate biological invasions? Front. Ecol. Environ. 10, 249–257 (2012).

Article 

Google Scholar
 

Sorte, C. J. B. et al. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol. Lett. 16, 261–270 (2012).

Article 

Google Scholar
 

Gido, K. B. et al. Pockets of resistance: response of arid-land fish communities to climate, hydrology, and wildfire. Freshw. Biol. 64, 761–777 (2019).

Article 

Google Scholar
 

Ruhí, A., Holmes, E. E., Rinne, J. N. & Sabo, J. L. Anomalous droughts, not invasion, decrease persistence of native fishes in a desert river. Glob. Change Biol. 21, 1482–1496 (2014).

Article 

Google Scholar
 

Stromberg, J. Dynamics of Fremont cottonwood (Populus fremontii) and saltcedar (Tamarix chinensis) populations along the San Pedro River, Arizona. J. Arid. Environ. 40, 133–155 (1998).

Article 

Google Scholar
 

Carneiro, L. et al. Typology of the ecological impacts of biological invasions. Trends Ecol. Evol. 40, 563–574 (2025).

Article 

Google Scholar
 

Daufresne, M., Bady, P. & Fruget, J.-F. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia 151, 544–559 (2007).

Article 

Google Scholar
 

Rahel, F. J. & Olden, J. D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22, 521–533 (2008).

Article 

Google Scholar
 

Magoulick, D. D. & Kobza, R. M. The role of refugia for fishes during drought: a review and synthesis. Freshw. Biol. 48, 1186–1198 (2003).

Article 

Google Scholar
 

Labbe, T. R. & Fausch, K. D. Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scales. Ecol. Appl. 10, 1774 (2000).

Article 

Google Scholar
 

Lennox, R. S. et al. Introduced trout hinder the recovery of native fish following an extreme flood disturbance. Preprint at BioRxiv https://doi.org/10.1101/2024.09.05.611377 (2024).

Leprieur, F. et al. Hydrological disturbance benefits a native fish at the expense of an exotic fish. J. Appl. Ecol. 43, 930–939 (2006).

Article 

Google Scholar
 

Hore, O. R., Tonkin, J., Boddy, N. C. & McIntosh, A. Flow matters: unravelling the interactive influences of flow alterations and non-native trout on vulnerable galaxiids. River Res. Appl. 41, 1131–1142 (2025).

Article 

Google Scholar
 

Lake, P. S. Ecological effects of perturbation by drought in flowing waters. Freshw. Biol. 48, 1161–1172 (2003).

Article 

Google Scholar
 

Myers, B. J. E. et al. The effects of flow extremes on native and non-native stream fishes in Puerto Rico. Freshw. Biol. 69, 1292–1306 (2024).

Article 

Google Scholar
 

Larson, E. I., Poff, N. L., Atkinson, C. L. & Flecker, A. S. Extreme flooding decreases stream consumer autochthony by increasing detrital resource availability. Freshw. Biol. 63, 1483–1497 (2018).

Article 
CAS 

Google Scholar
 

Sarremejane, R. et al. Drying and fragmentation drive the dynamics of resources, consumers and ecosystem functions across aquatic-terrestrial habitats in a river network. Oikos 2024, e10135 (2024).

Article 
CAS 

Google Scholar
 

Gessner, M. O., Chauvet, E. & Dobson, M. A perspective on leaf litter breakdown in streams. Oikos 85, 377 (1999).

Article 

Google Scholar
 

Corti, R. & Datry, T. Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France). Freshw. Sci. 31, 1187–1201 (2012).

Article 

Google Scholar
 

Jacobson, P. J. & Jacobson, K. M. Hydrologic controls of physical and ecological processes in Namib Desert ephemeral rivers: implications for conservation and management. J. Arid Environ. 93, 80–93 (2013).

Article 

Google Scholar
 

Glazebrook, H. S. & Robertson, A. I. The effect of flooding and flood timing on leaf litter breakdown rates and nutrient dynamics in a river red gum (Eucalyptus camaldulensis) forest. Aust. J. Ecol. 24, 625–635 (1999).

Article 

Google Scholar
 

Chauvet, E. Leaf litter decomposition in large rivers: the case of the River Garonne. Limnetica 13, 65–70 (1997).

Article 

Google Scholar
 

Langhans, S. D. & Tockner, K. The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147, 501–509 (2005).

Article 

Google Scholar
 

Bernal, S., von, Schiller, D., Sabater, F. & Martí, E. Hydrological extremes modulate nutrient dynamics in Mediterranean climate streams across different spatial scales. Hydrobiologia 719, 31–42 (2012).

Article 

Google Scholar
 

del Campo, R., Foulquier, A., Singer, G. & Datry, T. in The Ecology of Plant Litter Decomposition in Stream Ecosystems (eds Swan, C. M. et al.) 73–100 (Springer International, 2021).

Corti, R., Datry, T., Drummond, L. & Larned, S. T. Natural variation in immersion and emersion affects breakdown and invertebrate colonization of leaf litter in a temporary river. Aquat. Sci. 73, 537–550 (2011).

Article 

Google Scholar
 

Datry, T. et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat. Geosci. 11, 497–503 (2018).

Article 
CAS 

Google Scholar
 

Datry, T., Corti, R., Claret, C. & Philippe, M. Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the ‘drying memory’. Aquat. Sci. 73, 471–483 (2011).

Article 

Google Scholar
 

Pinna, M. et al. Influence of aperiodic summer droughts on leaf litter breakdown and macroinvertebrate assemblages: testing the drying memory in a Central Apennines River (Aterno River, Italy). Hydrobiologia 782, 111–126 (2016).

Article 

Google Scholar
 

Di Sabatino, A., Coscieme, L. & Cristiano, G. Effects of antecedent drying events on structure, composition and functional traits of invertebrate assemblages and leaf-litter breakdown in a former perennial river of Central Apennines (Aterno River, Abruzzo, Central Italy). Ecohydrology 15, e2358 (2021).

Article 

Google Scholar
 

Gómez-Gener, L., Lupon, A., Laudon, H. & Sponseller, R. A. Drought alters the biogeochemistry of boreal stream networks. Nat. Commun. 11, 1795 (2020).

Article 

Google Scholar
 

Acuña, V., Giorgi, A., Muñoz, I., Uehlinger, U. & Sabater, S. Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshw. Biol. 49, 960–971 (2004).

Article 

Google Scholar
 

Ferreira, V. & Canhoto, C. Future increase in temperature may stimulate litter decomposition in temperate mountain streams: evidence from a stream manipulation experiment. Freshw. Biol. 60, 881–892 (2015).

Article 

Google Scholar
 

Pérez, J., Correa-Araneda, F., López-Rojo, N., Basaguren, A. & Boyero, L. Extreme temperature events alter stream ecosystem functioning. Ecol. Indic. 121, 106984 (2021).

Article 

Google Scholar
 

Battin, T. J. et al. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature 613, 449–459 (2023).

Article 
CAS 

Google Scholar
 

López-Rojo, N. et al. Alternating drying and flowing phases control stream metabolism through short- and long-term effects: insights from a river network. J. Geophys. Res. Biogeosci. 130, e2024JG008369 (2025).

Article 

Google Scholar
 

Piano, E. et al. If Alpine streams run dry: the drought memory of benthic communities. Aquat. Sci. 81, 32 (2019).

Article 

Google Scholar
 

Crabot, J., Heino, J., Launay, B. & Datry, T. Drying determines the temporal dynamics of stream invertebrate structural and functional beta diversity. Ecography 43, 620–635 (2019).

Article 

Google Scholar
 

Vander Vorste, R., Obedzinski, M., Nossaman Pierce, S., Carlson, S. M. & Grantham, T. E. Refuges and ecological traps: extreme drought threatens persistence of an endangered fish in intermittent streams. Glob. Change Biol. 26, 3834–3845 (2020).

Article 

Google Scholar
 

Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).

Article 
CAS 

Google Scholar
 

Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).

Article 

Google Scholar
 

Van Looy, K. et al. The three Rs of river ecosystem resilience: resources, recruitment, and refugia. River Res. Appl. 35, 107–120 (2019).

Article 

Google Scholar
 

Bogan, M. T., Boersma, K. S. & Lytle, D. A. Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an arid-land stream network. Freshw. Biol. 58, 1016–1028 (2013).

Article 

Google Scholar
 

Chester, E. T. & Robson, B. J. Anthropogenic refuges for freshwater biodiversity: their ecological characteristics and management. Biol. Conserv. 166, 64–75 (2013).

Article 

Google Scholar
 

Vander Vorste, R., Malard, F. & Datry, T. Is drift the primary process promoting the resilience of river invertebrate communities? A manipulative field experiment in an intermittent alluvial river. Freshw. Biol. 61, 1276–1292 (2015).

Article 

Google Scholar
 

Priest, H. J. & Finn, D. S. Bucketloads of aquatic invertebrates in a dry intermittent stream. Ecology 104, e3936 (2023).

Article 

Google Scholar
 

Kawanishi, R., Inoue, M., Dohi, R., Fujii, A. & Miyake, Y. The role of the hyporheic zone for a benthic fish in an intermittent river: a refuge, not a graveyard. Aquat. Sci. 75, 425–431 (2013).

Article 

Google Scholar
 

Padial, A. A. et al. The role of an extreme flood disturbance on macrophyte assemblages in a Neotropical floodplain. Aquat. Sci. 71, 389–398 (2009).

Article 

Google Scholar
 

McCann, K. S., Rasmussen, J. B. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).

Article 
CAS 

Google Scholar
 

Siqueira, T. et al. Understanding temporal variability across trophic levels and spatial scales in freshwater ecosystems. Ecology 105, e4219 (2023).

Article 

Google Scholar
 

Ross, S. R. P.-J. et al. Predators mitigate the destabilising effects of heatwaves on multitrophic stream communities. Glob. Change Biol. 28, 403–416 (2021).

Article 

Google Scholar
 

Parsons, M., McLoughlin, C. A., Kotschy, K. A., Rogers, K. H. & Rountree, M. W. The effects of extreme floods on the biophysical heterogeneity of river landscapes. Front. Ecol. Environ. 3, 487 (2005).

Article 

Google Scholar
 

Eagle, L. J. B. et al. Extreme flood disturbance effects on multiple dimensions of river invertebrate community stability. J. Anim. Ecol. 90, 2135–2146 (2021).

Article 

Google Scholar
 

Lyu, J. et al. Extreme drought–heatwave events threaten the biodiversity and stability of aquatic plankton communities in the Yangtze River ecosystems. Commun. Earth Environ. 6, 171 (2025).

Article 

Google Scholar
 

Sheldon, F. et al. Assessment of the causes and solutions to the significant 2018–19 fish deaths in the Lower Darling River, New South Wales, Australia. Mar. Freshw. Res. 73, 147–158 (2021).

Article 

Google Scholar
 

Absalon, D., Matysik, M., Woźnica, A. & Janczewska, N. Detection of changes in the hydrobiological parameters of the Oder River during the ecological disaster in July 2022 based on multi-parameter probe tests and remote sensing methods. Ecol. Indic. 148, 110103 (2023).

Article 

Google Scholar
 

Kennedy, T. A. et al. Flow management for hydropower extirpates aquatic insects, undermining river food webs. BioScience 66, 561–575 (2016).

Article 

Google Scholar
 

Abernethy, E. F. et al. Hydropeaking intensity and dam proximity limit aquatic invertebrate diversity in the Colorado River Basin. Ecosphere 12, e03559 (2021).

Article 

Google Scholar
 

Datry, T. et al. Causes, responses, and implications of anthropogenic versus natural flow intermittence in river networks. BioScience 73, 9–22 (2022).

Article 

Google Scholar
 

Gido, K. B., Osborne, M. J., Propst, D. L., Turner, T. F. & Olden, J. D. Megadroughts pose mega-risk to native fishes of the American southwest. Fisheries 48, 204–214 (2023).

Article 

Google Scholar
 

Robertson, A. L., Brown, L. E., Klaar, M. J. & Milner, A. M. Stream ecosystem responses to an extreme rainfall event across multiple catchments in southeast Alaska. Freshw. Biol. 60, 2523–2534 (2015).

Article 

Google Scholar
 

Polazzo, F. et al. Combined effects of heatwaves and micropollutants on freshwater ecosystems: towards an integrated assessment of extreme events in multiple stressors research. Glob. Change Biol. 28, 1248–1267 (2021).

Article 

Google Scholar
 

Dietze, M. C. Prediction in ecology: a first-principles framework. Ecol. Appl. 27, 2048–2060 (2017).

Article 

Google Scholar
 

Johnson, T. F. et al. Revealing uncertainty in the status of biodiversity change. Nature 628, 788–794 (2024).

Article 
CAS 

Google Scholar
 

Perkins, S. E. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).

Article 

Google Scholar
 

Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

Article 

Google Scholar
 

van Hamel, A. & Brunner, M. I. Trends and drivers of water temperature extremes in mountain rivers. Water Resour. Res. 60, e2024WR037518 (2024).

Article 

Google Scholar
 

Bardsley, E. & Vetrova, V. The bounded inverse Weibull distribution: an extreme value alternative for application to environmental maxima? Watershed Ecol. Environ. 3, 57–63 (2021).

Article 

Google Scholar
 

Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. Fast calibrated additive quantile regression. J. Am. Stat. Assoc. 116, 1402–1412 (2020).

Article 

Google Scholar
 

Olivetti, L., Messori, G. & Jin, S. A quantile generalized additive approach for compound climate extremes: pan-Atlantic extremes as a case study. J. Adv. Model. Earth Syst. 16, e2023MS003753 (2024).

Article 

Google Scholar
 

Rigby, R., Stasinopoulos, D. & Voudouris, V. Discussion: a comparison of GAMLSS with quantile regression. Stat. Model. 13, 335–348 (2013).

Article 

Google Scholar
 

King, G. & Zeng, L. Logistic regression in rare events data. Polit. Anal. 9, 137–163 (2001).

Article 

Google Scholar
 

Rigby, R. A. & Stasinopoulos, D. M. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C Appl. Stat. 54, 507–554 (2005).

Article 

Google Scholar
 

Merder, J. et al. Geographic redistribution of microcystin hotspots in response to climate warming. Nat. Water 1, 844–854 (2023).

Article 

Google Scholar
 

Rigby, R. A., Stasinopoulos, M. D., Heller, G. Z. & De Bastiani, F. Distributions for Modeling Location, Scale, and Shape: Using GAMLSS in R (Chapman and Hall/CRC, 2019).

Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).

Article 
CAS 

Google Scholar
 

Lewis, A. S. L. et al. The power of forecasts to advance ecological theory. Methods Ecol. Evol. 14, 746–756 (2022).

Article 

Google Scholar
 

Pearl, J., Glymour, M. & Jewel, N. Causal Inference in Statistics: A Primer (John Wiley & Sons, 2016).

Kimmel, K., Dee, L. E., Avolio, M. L. & Ferraro, P. J. Causal assumptions and causal inference in ecological experiments. Trends Ecol. Evol. 36, 1141–1152 (2021).

Article 

Google Scholar
 

Siegel, K. & Dee, L. Foundations and future directions for causal inference in ecological research. Ecol. Lett. 28, e70053 (2025).

Article 

Google Scholar
 

Lytle, D. A. & Tonkin, J. D. Matrix community models for ecology and evolution. npj Biodivers. 2, 26 (2023).

Article 

Google Scholar
 

Tonkin, J. D., Merritt, D. M., Olden, J. D., Reynolds, L. V. & Lytle, D. A. Flow regime alteration degrades ecological networks in riparian ecosystems. Nat. Ecol. Evol. 2, 86–93 (2017).

Article 

Google Scholar
 

Rogosch, J. S. et al. Increasing drought favors nonnative fishes in a dryland river: evidence from a multispecies demographic model. Ecosphere 10, e02681 (2019).

Article 

Google Scholar
 

Ohlberger, J. et al. Effects of past and projected river discharge variability on freshwater production in an anadromous fish. Freshw. Biol. 63, 331–340 (2018).

Article 

Google Scholar
 

Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

Article 

Google Scholar
 

Ibáñez, I. et al. Integrated assessment of biological invasions. Ecol. Appl. 24, 25–37 (2014).

Article 

Google Scholar
 

Evans, M. E. K., Merow, C., Record, S., McMahon, S. M. & Enquist, B. J. Towards process-based range modeling of many species. Trends Ecol. Evol. 31, 860–871 (2016).

Article 

Google Scholar
 

Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).

Article 

Google Scholar
 

Koerich, G., Fraser, C. I., Lee, C. K., Morgan, F. J. & Tonkin, J. D. Forecasting the future of life in Antarctica. Trends Ecol. Evol. 38, 24–34 (2023).

Article 

Google Scholar
 

Schaub, M. & Abadi, F. Integrated population models: a novel analysis framework for deeper insights into population dynamics. J. Ornithol. 152, 227–237 (2010).

Article 

Google Scholar
 

González, E. J., Martorell, C. & Bolker, B. M. Inverse estimation of integral projection model parameters using time series of population-level data. Methods Ecol. Evol. 7, 147–156 (2016).

Article 

Google Scholar
 

Arthington, A. H. et al. Accelerating environmental flow implementation to bend the curve of global freshwater biodiversity loss. Environ. Rev. 32, 387–413 (2024).

Article 

Google Scholar
 

Messager, M. L. et al. A metasystem approach to designing environmental flows. BioScience 73, 643–662 (2023).

Article 

Google Scholar
 

Grantham, T. E., Matthews, J. H. & Bledsoe, B. P. Shifting currents: managing freshwater systems for ecological resilience in a changing climate. Water Secur. 8, 100049 (2019).

Article 

Google Scholar
 

Ciotti, D. C., Mckee, J., Pope, K. L., Kondolf, G. M. & Pollock, M. M. Design criteria for process-based restoration of fluvial systems. BioScience 71, 831–845 (2021).

Article 

Google Scholar
 

McCabe, C. L., Matthaei, C. D. & Tonkin, J. D. The ecological benefits of more room for rivers. Nat. Water 3, 260–270 (2025).

Article 

Google Scholar
 

Naiman, R. J., Latterell, J. J., Pettit, N. E. & Olden, J. D. Flow variability and the biophysical vitality of river systems. Comptes Rendus Géosci. 340, 629–643 (2008).

Article 

Google Scholar
 

Palmer, M. A., Hondula, K. L. & Koch, B. J. Ecological restoration of streams and rivers: shifting strategies and shifting goals. Annu. Rev. Ecol. Evol. Syst. 45, 247–269 (2014).

Article 

Google Scholar
 

Beechie, T. J. et al. Process-based principles for restoring river ecosystems. BioScience 60, 209–222 (2010).

Article 

Google Scholar
 

Backus, G. A., Clements, C. F. & Baskett, M. L. Restoring spatiotemporal variability to enhance the capacity for dispersal-limited species to track climate change. Ecology 105, e4257 (2024).

Article 

Google Scholar
 

da Silva, J. P. et al. The role of connectivity in conservation planning for species with obligatory interactions: prospects for future climate scenarios. Glob. Change Biol. 30, e17169 (2024).

Article 
CAS 

Google Scholar
 

Mason, R. J. et al. Rebalancing river lateral connectivity: an interdisciplinary focus for research and management. WIREs Water 12, e1766 (2024).

Article 

Google Scholar
 

Cid, N. et al. From meta-system theory to the sustainable management of rivers in the Anthropocene. Front. Ecol. Environ. 20, 49–57 (2021).

Article 

Google Scholar
 

Craig, L. S. et al. Meeting the challenge of interacting threats in freshwater ecosystems: a call to scientists and managers. Elem. Sci. Anthr. 5, 72 (2017).

Article 

Google Scholar
 

Mouquet, N., Gravel, D., Massol, F. & Calcagno, V. Extending the concept of keystone species to communities and ecosystems. Ecol. Lett. 16, 1–8 (2012).

Article 

Google Scholar
 

Patrick, C. J. et al. The application of metacommunity theory to the management of riverine ecosystems. WIREs Water 8, 1–21 (2021).

Article 

Google Scholar
 

Lynch, A. J. et al. Managing for RADical ecosystem change: applying the Resist–Accept–Direct (RAD) framework. Front. Ecol. Environ. 19, 461–469 (2021).

Article 

Google Scholar
 

Olsson, R. C., Wyborn, C. A. & van Kerkhoff, L. E. How the Resist–Accept–Direct framework is being used by communities for socio-economic climate adaptation: a case study in Australia’s Murray–Darling Basin. Reg. Environ. Change 24, 136 (2024).

Article 

Google Scholar
 

Grupper, M. A., Horne, A. C., Webb, J. A. & Olden, J. Identifying and approaching barriers to environmental flow implementation using social–ecological systems thinking. WIREs Water 12, e1764 (2025).

Article 

Google Scholar
 

Poff, N. L. et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Change 6, 25–34 (2015).

Article 

Google Scholar
 

Tonkin, J. D. in Encyclopedia of Inland Waters (eds Mehner, T. & Tockner, K.) 653–664 (Elsevier, 2022).

Kuehne, L. M. et al. The future of global river health monitoring. PLoS Water 2, e0000101 (2023).

Article 

Google Scholar
 

Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

Article 
CAS 

Google Scholar
 

Tomsett, C. & Leyland, J. Remote sensing of river corridors: a review of current trends and future directions. River Res. Appl. 35, 779–803 (2019).

Article 

Google Scholar
 

Pawlowski, J. et al. The future of biotic indices in the ecogenomic era: integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci. Total Environ. 637–638, 1295–1310 (2018).

Article 

Google Scholar
 

Krabbenhoft, C. A. et al. Assessing placement bias of the global river gauge network. Nat. Sustain. 5, 586–592 (2022).

Article 

Google Scholar
 

Milner, A. M., Robertson, A. L., McDermott, M. J., Klaar, M. J. & Brown, L. E. Major flood disturbance alters river ecosystem evolution. Nat. Clim. Change 3, 137–141 (2012).

Article 

Google Scholar
 

Tiegs, S. D. et al. Human activities shape global patterns of decomposition rates in rivers. Science 384, 1191–1195 (2024).

Article 
CAS 

Google Scholar
 

Smith, M. D. et al. Extreme drought impacts have been underestimated in grasslands and shrublands globally. Proc. Natl Acad. Sci. USA 121, e2309881120 (2024).

Article 

Google Scholar
 

Stecca, G., Hicks, D. M., Measures, R. & Henderson, R. Numerical modeling prediction of vegetation trajectories under different flow regimes in New Zealand braided rivers. J. Geophys. Res. Earth Surf. 128, e2023JF007397 (2023).

Article 

Google Scholar
 

Harris, H. A. L., Tonkin, J. D. & McIntosh, A. R. in Resilience and Riverine Landscapes (eds Thoms, M. & Fuller, I.) 157–175 (Elsevier, 2024).

Wohl, E., Dwire, K., Sutfin, N., Polvi, L. & Bazan, R. Mechanisms of carbon storage in mountainous headwater rivers. Nat. Commun. 3, 1263 (2012).

Article 

Google Scholar
 

Mahecha, M. D. et al. Biodiversity loss and climate extremes — study the feedbacks. Nature 612, 30–32 (2022).

Article 

Google Scholar
 

Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

Article 

Google Scholar
 

Feeley, H. B., Davis, S., Bruen, M., Blacklocke, S. & Kelly-Quinn, M. The impact of a catastrophic storm event on benthic macroinvertebrate communities in upland headwater streams and potential implications for ecological diversity and assessment of ecological status. J. Limnol. 71, 109–318 (2012).

Article 

Google Scholar
 

Foord, S. & Fouché, P. Response of instream animal communities to a short-term extreme event and to longer-term cumulative impacts in a strategic water resource area, South Africa. Afr. J. Aquat. Sci. 41, 29–40 (2016).

Article 

Google Scholar
 

Kim, D. G., Yoon, T. J., Baek, M. J. & Bae, Y. J. Impact of rainfall intensity on benthic macroinvertebrate communities in a mountain stream under the East Asian monsoon climate. J. Freshw. Ecol. 33, 489–501 (2018).

Article 
CAS 

Google Scholar
 

Herbst, D. B., Cooper, S. D., Medhurst, R. B., Wiseman, S. W. & Hunsaker, C. T. Drought ecohydrology alters the structure and function of benthic invertebrate communities in mountain streams. Freshw. Biol. 64, 886–902 (2019).

Article 

Google Scholar
 

Calapez, A. R., Elias, C. L., Almeida, S. F. P. & Feio, M. J. Extreme drought effects and recovery patterns in the benthic communities of temperate streams. Limnetica 33, 281–296 (2014).


Google Scholar
 

Fenoglio, S., Bo, T., Cucco, M. & Malacarne, G. Response of benthic invertebrate assemblages to varying drought conditions in the Po river (NW Italy). Ital. J. Zool. 74, 191–201 (2007).

Article 

Google Scholar
 

Ferreira, V., Chauvet, E. & Canhoto, C. Effects of experimental warming, litter species, and presence of macroinvertebrates on litter decomposition and associated decomposers in a temperate mountain stream. Can. J. Fish. Aquat. Sci. 72, 206–216 (2015).

Article 
CAS 

Google Scholar
 

Sáinz-Bariáin, M. et al. Changes in Mediterranean high mountain Trichoptera communities after a 20-year period. Aquat. Sci. 78, 669–682 (2015).

Article 

Google Scholar
 

Poff, N. L. et al. The natural flow regime. BioScience 47, 769–784 (1997).

Article 

Google Scholar
 

Olden, J. D. & Naiman, R. J. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 55, 86–107 (2009).

Article 

Google Scholar
 

Stewart, I. T., Cayan, D. R. & Dettinger, M. D. Changes toward earlier streamflow timing across western North America. J. Clim. 18, 1136–1155 (2005).

Article 

Google Scholar
 

Wang, H. et al. Anthropogenic climate change has influenced global river flow seasonality. Science 383, 1009–1014 (2024).

Article 
CAS 

Google Scholar
 

Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36, 1033–1050 (2015).

Article 

Google Scholar
 

Udall, B. & Overpeck, J. The twenty-first century Colorado River hot drought and implications for the future. Water Resour. Res. 53, 2404–2418 (2017).

Article 

Google Scholar
 

Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).

Article 
CAS 

Google Scholar
 

Isaak, D. J., Wollrab, S., Horan, D. & Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Change 113, 499–524 (2011).

Article 

Google Scholar
 

van Vliet, M. T. H. et al. Global river discharge and water temperature under climate change. Glob. Environ. Change 23, 450–464 (2013).

Article 

Google Scholar
 

Anderson, S. & Chartrand, S. The streamflow response to multi-day warm anomaly events: sensitivity to future warming and spatiotemporal variability by event magnitude. Earth’s Future 12, e2024EF004962 (2024).

Article 

Google Scholar
 

Beltaos, S. & Prowse, T. D. Climate impacts on extreme ice-jam events in Canadian rivers. Hydrol. Sci. J. 46, 157–181 (2001).

Article 
CAS 

Google Scholar
 

Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).

Article 

Google Scholar
 

Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2012).

Article 

Google Scholar
 

Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).

Article 

Google Scholar
 

Schindler, D. E., Armstrong, J. B. & Reed, T. E. The portfolio concept in ecology and evolution. Front. Ecol. Environ. 13, 257–263 (2015).

Article 

Google Scholar
 

Erős, T. et al. Effects of nonnative species on the stability of riverine fish communities. Ecography 43, 1156–1166 (2020).

Article 

Google Scholar
 

Wang, S., Lamy, T., Hallett, L. M. & Loreau, M. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: linking theory to data. Ecography 42, 1200–1211 (2019).

Article 

Google Scholar
 

Lamy, T. et al. The dual nature of metacommunity variability. Oikos 130, 2078–2092 (2021).

Article 

Google Scholar
 

Gianuca, A. T. et al. River flow intermittence influence biodiversity–stability relationships across spatial scales: implications for an uncertain future. Glob. Change Biol. 30, e17457 (2024).

Article 
CAS 

Google Scholar
 

Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).

Article 
CAS 

Google Scholar
 

Hershkovitz, Y. & Gasith, A. Resistance, resilience, and community dynamics in Mediterranean-climate streams. Hydrobiologia 719, 59–75 (2012).

Article 

Google Scholar
 

Larsen, S. et al. The geography of metapopulation synchrony in dendritic river networks. Ecol. Lett. 24, 791–801 (2021).

Article 

Google Scholar
 

Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl Acad. Sci. USA 111, 13894–13899 (2014).

Article 
CAS 

Google Scholar
 

Steel, E. A. et al. Thermal landscapes in a changing climate: biological implications of water temperature patterns in an extreme year. Can. J. Fish. Aquat. Sci. 76, 1740–1756 (2019).

Article 

Google Scholar
Â