Parsons PA. Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biol Rev Camb Philos Soc. 2005;80(4):589–610.
Hughes C, Eastwood R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci U S A. 2006;103(27):10334–9.
Wang X, Liang D, Jin W, Tang M, Shalayiwu, Liu S, Zhang P. Out of tibet: genomic perspectives on the evolutionary history of extant Pikas. Mol Biol Evol. 2020;37(6):1577–92.
Dillon RT, Robinson JD. The snails the dinosaurs saw: are the pleurocerid populations of the older Appalachians a relict of the paleozoic era? J N Am Benthol Soc. 2009;28(1):1–11.
Keith R, Hedin M. Extreme mitochondrial population subdivision in Southern Appalachian paleoendemic spiders (Araneae: hypochilidae: Hypochilus), with implications for species delimitation. J Arachnol. 2012;40(2):167–81.
Crespi EJ, Rissler LJ, Browne RA. Testing pleistocene refugia theory: phylogeographical analysis of desmognathus wrighti, a high-elevation salamander in the Southern Appalachians. Mol Ecol. 2003;12(4):969–84.
Meng Q-R, Wang E, Hu J-M. Mesozoic sedimentary evolution of the Northwest Sichuan basin: implication for continued clockwise rotation of the South China block. Geol Soc Am Bull. 2005;117(3–4):396–410.
Deng T, Wu F, Zhou Z, Su T. Tibetan plateau: an evolutionary junction for the history of modern biodiversity. Sci China Earth Sci. 2020;63(2):172–87.
Saylor JE, Horton BK. Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in miocene volcanic glass from southern Peru. Earth Planet Sci Lett. 2014;387:120–31.
Sundell KE, Saylor JE, Lapen TJ, Horton BK. Implications of variable late cenozoic surface uplift across the Peruvian central Andes. Sci Rep. 2019;9(1):4877.
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403(6772):853–8.
Li Y-F, Wang S-J, Zhou J-Y, Gao C-Q, Zheng C-G, Xue H-J, Bu W-J. Integrative taxonomy of the stalk-eyed bug genus Chauliops (Heteroptera: malcidae: Chauliopinae) reveals orogeny-driven speciation. J Syst Evol. 2023;61(5):932–47.
An Z, Kutzbach JE, Prell WL, Porter SC. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since late miocene times. Nature. 2001;411(6833):62–6.
Yao T-d, Zheng D. Uplifting of Tibetan plateau with its environmental effects. Adv Earth Sci. 2006;21:451–8.
Royden LH, Burchfiel BC, van der Hilst RD. The geological evolution of the Tibetan Plateau. Science. 2008;321(5892):1054–8.
Wang C, Zhao X, Liu Z, Lippert PC, Graham SA, Coe RS, Yi H, Zhu L, Liu S, Li Y. Constraints on the early uplift history of the Tibetan plateau. Proc Natl Acad Sci U S A. 2008;105(13):4987–92.
Zhu D-C, Zhao Z-D, Niu Y, Dilek Y, Hou Z-Q, Mo X-X. The origin and pre-Cenozoic evolution of the Tibetan plateau. Gondwana Res. 2013;23(4):1429–54.
Spicer RA. Tibet, the himalaya, Asian monsoons and biodiversity –. What Ways Are They Related?? Plant Divers. 2017;39(5):233–44.
Su T, Farnsworth A, Spicer RA, Huang J, Wu FX, Liu J, Li SF, Xing YW, Huang YJ, Deng WYD, et al. No high Tibetan Plateau until the neogene. Sci Adv. 2019;5(3): eaav2189.
Schluter D. The ecology of adaptive radiation. In. Oxford University Press; 2000.
Gavrilets S, Losos JB. Adaptive radiation: contrasting theory with data. Science. 2009;323(5915):732–7.
Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner-Riehl AN. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev. 2015;90(1):236–53.
Chang M, Wang X, Liu H, Miao D, Zhao Q, Wu G, Liu J, Li Q, Sun Z, Wang N. Extraordinarily thick-boned fish linked to the aridification of the Qaidam basin (northern Tibetan Plateau). Proc Natl Acad Sci U S A. 2008;105(36):13246–51.
Griswold C, Ramírez M, Coddington J, Platnick N. Atlas of phylogenetic data for entelegyne spiders (Araneae: araneomorphae: Entelegynae) with comments on their phylogeny. Proc Calif Acad Sci. 2005;56:1–324.
Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr Biol. 2014;24(15):1765–71.
Garrison NL, Rodriguez J, Agnarsson I, Coddington JA, Griswold CE, Hamilton CA, Hedin M, Kocot KM, Ledford JM, Bond JE. Spider phylogenomics: untangling the spider tree of life. PeerJ. 2016;4:e1719.
Wheeler WC, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA, Griswold CE, Hormiga G, Prendini L, Ramírez MJ, Sierwald P, et al. The spider tree of life: phylogeny of araneae based on target-gene analyses from an extensive taxon sampling. Cladistics. 2017;33(6):574–616.
Fan Z, Wang L-Y, Xiao L, Tan B, Luo B, Ren T-Y, Liu N, Zhang Z-S, Bai M. Lampshade web spider Ectatosticta davidi chromosome-level genome assembly provides evidence for its phylogenetic position. Commun Biol. 2023;6(1): 748.
Magalhaes ILF, Azevedo GHF, Michalik P, Ramírez MJ. The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the mesozoic. Biol Rev. 2020;95(1):184–217.
Catley KM. Descriptions of new Hypochilus species from new Mexico and California with a cladistic analysis of the hypochilidae (Araneae). Am Mus Novit. 1994;3088:1–27.
Hedin MC. Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae). Mol Phylogenet Evol. 2001;18(2):238–51.
Hedin M, Wood DA. Genealogical exclusivity in geographically proximate populations of Hypochilus thorelli Marx (Araneae, Hypochilidae) on the Cumberland plateau of North America. Mol Ecol. 2002;11(10):1975–88.
Forster RR, Platnick NI, Gray MR. A review of the spider superfamilies Hypochiloidea and Austrochiloidea (Araneae, Araneomorphae). Bull AMNH. 1987;185:1.
Ciaccio E, Debray A, Hedin M. Phylogenomics of paleoendemic lampshade spiders (Araneae, hypochilidae, Hypochilus), with the description of a new species from montane California. ZooKeys. 2022;1086:163–204.
Yang C, Zheng Y, Tan S, Meng G, Rao W, Yang C-q, Bourne D, O’Brien P, Xu J, Sha L, et al. Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics. 2020;21:862.
Lin Y, Li S. Four new species of the genus Ectatosticta (Araneae, Hypochilidae) from China. Acta Arachnol Sin. 2021;30(1):1–8.
Li JN, Yan XY, Lin YJ, Li SQ, Chen HF. Challenging Wallacean and linnean shortfalls: Ectatosticta spiders (Araneae, Hypochilidae) from China. Zool Res. 2021;42(6):792–5.
Wang L-Y, Zhao JX, Irfan M, Zhang Z-S. Review of the spider genus Ectatosticta simon, 1892 (Araneae: Hypochilidae) with description of four new species from China. Zootaxa. 2021;5016(4):523–42.
Wang L-Y, Zhao J-X, Irfan M, Zhang Z. Further revision of the spider genus Ectatosticta simon, 1892 (Hypochilidae), with the description of three new species. Acta Arachnol Sin. 2021;30(2):91–8.
World Spider. Catalog version 25.5 [http://wsc.nmbe.ch,].
Fryxell PA. The interpretation of disjunct distributions. Taxon. 1967;16(4):316–24.
Bartish IV, Antonelli A, Richardson JE, Swenson U. Vicariance or long-distance dispersal: historical biogeography of the Pantropical subfamily Chrysophylloideae (Sapotaceae). J Biogeogr. 2011;38(1):177–90.
Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol Evol. 2012;27(1):47–56.
Popp M, Mirré V, Brochmann C. A single mid-Pleistocene long-distance dispersal by a bird can explain the extreme bipolar disjunction in crowberries (Empetrum). Proc Natl Acad Sci U S A. 2011;108(16):6520–5.
Villaverde T, Escudero M, Luceño M, Martín-Bravo S. Long-distance dispersal during the middle–late Pleistocene explains the bipolar disjunction of Carex maritima (Cyperaceae). J Biogeogr. 2015;42(10):1820–31.
Trewick S. Plate tectonics in biogeography. In: Int Encyclopedia Geogr. 2017: 1–9.
Derkarabetian S, Baker CM, Giribet G. Complex patterns of Gondwanan biogeography revealed in a dispersal-limited arachnid. J Biogeogr. 2021;48(6):1336–52.
Villastrigo A, Lam A, Van Dam MH, Scheunert A, Hájek J, Hendrich L, Michat MC, Megna Y, Figueroa L, Zenteno N, et al. Plate tectonics, cold adaptation and long-distance range expansion to remote archipelagos and the high Andes as drivers of a circumantarctic freshwater arthropod radiation. Mol Phylogenet Evol. 2025;204: 108279.
Meng G, Li Y, Yang C, Liu S. Mitoz: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019;47(11): e63.
Donath A, Jühling F, Al-Arab M, Bernhart SH, Reinhardt F, Stadler PF, Middendorf M, Bernt M. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 2019;47(20):10543–52.
Brasseur MV, Astrin JJ, Geiger MF, Mayer C. Mitogeneextractor: efficient extraction of mitochondrial genes from next-generation sequencing libraries. Methods Ecol Evol. 2023;14(4):1017–24.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studie. Front Zool. 2014;11:81.
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
Darriba D, Taboada GL, Doallo R, Posada D. JModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.
Penney D, Selden PA. The oldest linyphiid spider, in lower cretaceous Lebanese amber (Araneae, Linyphiidae, Linyphiinae). J Arachnol. 2002;30:487–93.
Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac Res. 2012;37:155–63.
Selden PA, Penney D. Fossil spiders. Biol Rev Camb Philos Soc. 2010;85(1):171–206.
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4(1): vey016.
Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/]
BioGeoBEARS. Biogeography with bayesian and likelihood evolutionary analysis in R scripts. Available at cran.r-project.org/web/packages/BioGeoBEARS/
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of maxent for ecologists. Divers Distrib. 2011;17(1):43–57.
Li JN, Yan XY, Lin YJ, Li SQ, Chen HF. Challenging Wallacean and Linnean shortfalls: Ectatosticta spiders (Araneae, Hypochilidae) from China. Zool Res. 2021;42(6):792–5.
Platnick N, Jaeger P. A new species of the basal araneomorph spider genus Ectatosticta. ZooKeys. 2009;16:209–15.
Esri. ArcGIS desktop: release 10.8. In: Redlands. CA: Environmental Systems Research Institute; 2020.
Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One. 2014;9(2):e89543.
Stadler T. Mammalian phylogeny reveals recent diversification rate shifts. Proc Natl Acad Sci U S A. 2011;108(15):6187–92.
Pons J, Bover P, Bidegaray-Batista L, Arnedo MA. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics. 2019;20(1):665.
Masta SE, Boore JL. Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Mol Biol Evol. 2008;25(5):949–59.
Miao Y, Fang X, Sun J, Xiao W, Yang Y, Wang X, Farnsworth A, Huang K, Ren Y, Wu F, et al. A new biologic paleoaltimetry indicating late miocene rapid uplift of Northern Tibet plateau. Science. 2022;378(6624):1074–9.
Mercier JL, Vergely P, Zhang YQ, Hou MJ, Bellier O, Wang YM. Structural records of the late Cretaceous–Cenozoic extension in Eastern China and the kinematics of the Southern Tan-Lu and Qinling fault zone (Anhui and Shaanxi provinces, PR China). Tectonophysics. 2013;582:50–75.
Ding L, Kapp P, Cai F, Garzione CN, Xiong Z, Wang H, Wang C. Timing and mechanisms of Tibetan Plateau uplift. Nat Rev Earth Environ. 2022;3(10):652–67.
Mulch A, Chamberlain CP. The rise and growth of Tibet. Nature. 2006;439(7077):670–1.
Meng Q-R. Origin of the Qinling Mountains(in Chinese). Scientia Sinica Terrae. 2017;47(4):412–20.
Shi X, Yang Z, Dong Y, Zhou B. Tectonic uplift of the Northern Qinling mountains (Central China) during the late cenozoic: evidence from DEM-based geomorphological analysis. J Asian Earth Sci. 2019;184: 104005.
Blakey RC, Ranney WD. Ancient landscapes of Western North america: A geologic history with paleogeographic maps. Switzerland: Springer; 2018. pp. 140–76.
Vieites DR, Min M-S, Wake DB. Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc Natl Acad Sci U S A. 2007;104(50):19903–7.
Bird P. Formation of the Rocky Mountains, Western United States: a continuum computer model. Science. 1988;239(4847):1501–7.
Cassel EJ, Graham SA, Chamberlain CP. Cenozoic tectonic and topographic evolution of the Northern Sierra Nevada, California,through stable isotope paleoaltimetry in volcanic glass. Geology. 2009;37:547–50.
Mulch A, Graham SA, Chamberlain CP. Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada. Science. 2006;313:87–9.
Jess S, Enkelmann E, Matthews WA. Why are the Appalachians high? New insights from detrital apatite laser ablation (U-Th-Sm)/He dating. Earth Planet Sci Lett. 2022;597: 117794.