Parsons PA. Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biol Rev Camb Philos Soc. 2005;80(4):589–610.

Article 
PubMed 

Google Scholar
 

Hughes C, Eastwood R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci U S A. 2006;103(27):10334–9.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang X, Liang D, Jin W, Tang M, Shalayiwu, Liu S, Zhang P. Out of tibet: genomic perspectives on the evolutionary history of extant Pikas. Mol Biol Evol. 2020;37(6):1577–92.

Article 
CAS 
PubMed 

Google Scholar
 

Dillon RT, Robinson JD. The snails the dinosaurs saw: are the pleurocerid populations of the older Appalachians a relict of the paleozoic era? J N Am Benthol Soc. 2009;28(1):1–11.

Article 

Google Scholar
 

Keith R, Hedin M. Extreme mitochondrial population subdivision in Southern Appalachian paleoendemic spiders (Araneae: hypochilidae: Hypochilus), with implications for species delimitation. J Arachnol. 2012;40(2):167–81.

Article 

Google Scholar
 

Crespi EJ, Rissler LJ, Browne RA. Testing pleistocene refugia theory: phylogeographical analysis of desmognathus wrighti, a high-elevation salamander in the Southern Appalachians. Mol Ecol. 2003;12(4):969–84.

Article 
CAS 
PubMed 

Google Scholar
 

Meng Q-R, Wang E, Hu J-M. Mesozoic sedimentary evolution of the Northwest Sichuan basin: implication for continued clockwise rotation of the South China block. Geol Soc Am Bull. 2005;117(3–4):396–410.

Article 

Google Scholar
 

Deng T, Wu F, Zhou Z, Su T. Tibetan plateau: an evolutionary junction for the history of modern biodiversity. Sci China Earth Sci. 2020;63(2):172–87.

Article 

Google Scholar
 

Saylor JE, Horton BK. Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in miocene volcanic glass from southern Peru. Earth Planet Sci Lett. 2014;387:120–31.

Article 
CAS 

Google Scholar
 

Sundell KE, Saylor JE, Lapen TJ, Horton BK. Implications of variable late cenozoic surface uplift across the Peruvian central Andes. Sci Rep. 2019;9(1):4877.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403(6772):853–8.

Article 
CAS 
PubMed 

Google Scholar
 

Li Y-F, Wang S-J, Zhou J-Y, Gao C-Q, Zheng C-G, Xue H-J, Bu W-J. Integrative taxonomy of the stalk-eyed bug genus Chauliops (Heteroptera: malcidae: Chauliopinae) reveals orogeny-driven speciation. J Syst Evol. 2023;61(5):932–47.

Article 

Google Scholar
 

An Z, Kutzbach JE, Prell WL, Porter SC. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since late miocene times. Nature. 2001;411(6833):62–6.

Article 
CAS 

Google Scholar
 

Yao T-d, Zheng D. Uplifting of Tibetan plateau with its environmental effects. Adv Earth Sci. 2006;21:451–8.


Google Scholar
 

Royden LH, Burchfiel BC, van der Hilst RD. The geological evolution of the Tibetan Plateau. Science. 2008;321(5892):1054–8.

Article 
CAS 
PubMed 

Google Scholar
 

Wang C, Zhao X, Liu Z, Lippert PC, Graham SA, Coe RS, Yi H, Zhu L, Liu S, Li Y. Constraints on the early uplift history of the Tibetan plateau. Proc Natl Acad Sci U S A. 2008;105(13):4987–92.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhu D-C, Zhao Z-D, Niu Y, Dilek Y, Hou Z-Q, Mo X-X. The origin and pre-Cenozoic evolution of the Tibetan plateau. Gondwana Res. 2013;23(4):1429–54.

Article 

Google Scholar
 

Spicer RA. Tibet, the himalaya, Asian monsoons and biodiversity –. What Ways Are They Related?? Plant Divers. 2017;39(5):233–44.

PubMed 

Google Scholar
 

Su T, Farnsworth A, Spicer RA, Huang J, Wu FX, Liu J, Li SF, Xing YW, Huang YJ, Deng WYD, et al. No high Tibetan Plateau until the neogene. Sci Adv. 2019;5(3): eaav2189.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schluter D. The ecology of adaptive radiation. In. Oxford University Press; 2000.

Gavrilets S, Losos JB. Adaptive radiation: contrasting theory with data. Science. 2009;323(5915):732–7.

Article 
CAS 
PubMed 

Google Scholar
 

Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner-Riehl AN. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev. 2015;90(1):236–53.

Article 
PubMed 

Google Scholar
 

Chang M, Wang X, Liu H, Miao D, Zhao Q, Wu G, Liu J, Li Q, Sun Z, Wang N. Extraordinarily thick-boned fish linked to the aridification of the Qaidam basin (northern Tibetan Plateau). Proc Natl Acad Sci U S A. 2008;105(36):13246–51.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Griswold C, Ramírez M, Coddington J, Platnick N. Atlas of phylogenetic data for entelegyne spiders (Araneae: araneomorphae: Entelegynae) with comments on their phylogeny. Proc Calif Acad Sci. 2005;56:1–324.


Google Scholar
 

Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr Biol. 2014;24(15):1765–71.

Article 
CAS 
PubMed 

Google Scholar
 

Garrison NL, Rodriguez J, Agnarsson I, Coddington JA, Griswold CE, Hamilton CA, Hedin M, Kocot KM, Ledford JM, Bond JE. Spider phylogenomics: untangling the spider tree of life. PeerJ. 2016;4:e1719.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wheeler WC, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA, Griswold CE, Hormiga G, Prendini L, Ramírez MJ, Sierwald P, et al. The spider tree of life: phylogeny of araneae based on target-gene analyses from an extensive taxon sampling. Cladistics. 2017;33(6):574–616.

Article 
PubMed 

Google Scholar
 

Fan Z, Wang L-Y, Xiao L, Tan B, Luo B, Ren T-Y, Liu N, Zhang Z-S, Bai M. Lampshade web spider Ectatosticta davidi chromosome-level genome assembly provides evidence for its phylogenetic position. Commun Biol. 2023;6(1): 748.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Magalhaes ILF, Azevedo GHF, Michalik P, Ramírez MJ. The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the mesozoic. Biol Rev. 2020;95(1):184–217.

Article 
PubMed 

Google Scholar
 

Catley KM. Descriptions of new Hypochilus species from new Mexico and California with a cladistic analysis of the hypochilidae (Araneae). Am Mus Novit. 1994;3088:1–27.


Google Scholar
 

Hedin MC. Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae). Mol Phylogenet Evol. 2001;18(2):238–51.

Article 
CAS 
PubMed 

Google Scholar
 

Hedin M, Wood DA. Genealogical exclusivity in geographically proximate populations of Hypochilus thorelli Marx (Araneae, Hypochilidae) on the Cumberland plateau of North America. Mol Ecol. 2002;11(10):1975–88.

Article 
CAS 
PubMed 

Google Scholar
 

Forster RR, Platnick NI, Gray MR. A review of the spider superfamilies Hypochiloidea and Austrochiloidea (Araneae, Araneomorphae). Bull AMNH. 1987;185:1.


Google Scholar
 

Ciaccio E, Debray A, Hedin M. Phylogenomics of paleoendemic lampshade spiders (Araneae, hypochilidae, Hypochilus), with the description of a new species from montane California. ZooKeys. 2022;1086:163–204.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang C, Zheng Y, Tan S, Meng G, Rao W, Yang C-q, Bourne D, O’Brien P, Xu J, Sha L, et al. Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics. 2020;21:862.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lin Y, Li S. Four new species of the genus Ectatosticta (Araneae, Hypochilidae) from China. Acta Arachnol Sin. 2021;30(1):1–8.


Google Scholar
 

Li JN, Yan XY, Lin YJ, Li SQ, Chen HF. Challenging Wallacean and linnean shortfalls: Ectatosticta spiders (Araneae, Hypochilidae) from China. Zool Res. 2021;42(6):792–5.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang L-Y, Zhao JX, Irfan M, Zhang Z-S. Review of the spider genus Ectatosticta simon, 1892 (Araneae: Hypochilidae) with description of four new species from China. Zootaxa. 2021;5016(4):523–42.

Article 
PubMed 

Google Scholar
 

Wang L-Y, Zhao J-X, Irfan M, Zhang Z. Further revision of the spider genus Ectatosticta simon, 1892 (Hypochilidae), with the description of three new species. Acta Arachnol Sin. 2021;30(2):91–8.


Google Scholar
 

World Spider. Catalog version 25.5 [http://wsc.nmbe.ch,].

Fryxell PA. The interpretation of disjunct distributions. Taxon. 1967;16(4):316–24.

Article 

Google Scholar
 

Bartish IV, Antonelli A, Richardson JE, Swenson U. Vicariance or long-distance dispersal: historical biogeography of the Pantropical subfamily Chrysophylloideae (Sapotaceae). J Biogeogr. 2011;38(1):177–90.

Article 

Google Scholar
 

Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol Evol. 2012;27(1):47–56.

Article 
PubMed 

Google Scholar
 

Popp M, Mirré V, Brochmann C. A single mid-Pleistocene long-distance dispersal by a bird can explain the extreme bipolar disjunction in crowberries (Empetrum). Proc Natl Acad Sci U S A. 2011;108(16):6520–5.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Villaverde T, Escudero M, Luceño M, Martín-Bravo S. Long-distance dispersal during the middle–late Pleistocene explains the bipolar disjunction of Carex maritima (Cyperaceae). J Biogeogr. 2015;42(10):1820–31.

Article 

Google Scholar
 

Trewick S. Plate tectonics in biogeography. In: Int Encyclopedia Geogr. 2017: 1–9.

Derkarabetian S, Baker CM, Giribet G. Complex patterns of Gondwanan biogeography revealed in a dispersal-limited arachnid. J Biogeogr. 2021;48(6):1336–52.

Article 

Google Scholar
 

Villastrigo A, Lam A, Van Dam MH, Scheunert A, Hájek J, Hendrich L, Michat MC, Megna Y, Figueroa L, Zenteno N, et al. Plate tectonics, cold adaptation and long-distance range expansion to remote archipelagos and the high Andes as drivers of a circumantarctic freshwater arthropod radiation. Mol Phylogenet Evol. 2025;204: 108279.

Article 
PubMed 

Google Scholar
 

Meng G, Li Y, Yang C, Liu S. Mitoz: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019;47(11): e63.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Donath A, Jühling F, Al-Arab M, Bernhart SH, Reinhardt F, Stadler PF, Middendorf M, Bernt M. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 2019;47(20):10543–52.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brasseur MV, Astrin JJ, Geiger MF, Mayer C. Mitogeneextractor: efficient extraction of mitochondrial genes from next-generation sequencing libraries. Methods Ecol Evol. 2023;14(4):1017–24.

Article 

Google Scholar
 

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studie. Front Zool. 2014;11:81.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Darriba D, Taboada GL, Doallo R, Posada D. JModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Penney D, Selden PA. The oldest linyphiid spider, in lower cretaceous Lebanese amber (Araneae, Linyphiidae, Linyphiinae). J Arachnol. 2002;30:487–93.

Article 

Google Scholar
 

Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac Res. 2012;37:155–63.

Article 

Google Scholar
 

Selden PA, Penney D. Fossil spiders. Biol Rev Camb Philos Soc. 2010;85(1):171–206.

Article 
PubMed 

Google Scholar
 

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4(1): vey016.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/]

BioGeoBEARS. Biogeography with bayesian and likelihood evolutionary analysis in R scripts. Available at cran.r-project.org/web/packages/BioGeoBEARS/

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of maxent for ecologists. Divers Distrib. 2011;17(1):43–57.

Article 

Google Scholar
 

Li JN, Yan XY, Lin YJ, Li SQ, Chen HF. Challenging Wallacean and Linnean shortfalls: Ectatosticta spiders (Araneae, Hypochilidae) from China. Zool Res. 2021;42(6):792–5.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Platnick N, Jaeger P. A new species of the basal araneomorph spider genus Ectatosticta. ZooKeys. 2009;16:209–15.

Article 

Google Scholar
 

Esri. ArcGIS desktop: release 10.8. In: Redlands. CA: Environmental Systems Research Institute; 2020.


Google Scholar
 

Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One. 2014;9(2):e89543.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stadler T. Mammalian phylogeny reveals recent diversification rate shifts. Proc Natl Acad Sci U S A. 2011;108(15):6187–92.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pons J, Bover P, Bidegaray-Batista L, Arnedo MA. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics. 2019;20(1):665.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Masta SE, Boore JL. Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Mol Biol Evol. 2008;25(5):949–59.

Article 
CAS 
PubMed 

Google Scholar
 

Miao Y, Fang X, Sun J, Xiao W, Yang Y, Wang X, Farnsworth A, Huang K, Ren Y, Wu F, et al. A new biologic paleoaltimetry indicating late miocene rapid uplift of Northern Tibet plateau. Science. 2022;378(6624):1074–9.

Article 
CAS 
PubMed 

Google Scholar
 

Mercier JL, Vergely P, Zhang YQ, Hou MJ, Bellier O, Wang YM. Structural records of the late Cretaceous–Cenozoic extension in Eastern China and the kinematics of the Southern Tan-Lu and Qinling fault zone (Anhui and Shaanxi provinces, PR China). Tectonophysics. 2013;582:50–75.

Article 

Google Scholar
 

Ding L, Kapp P, Cai F, Garzione CN, Xiong Z, Wang H, Wang C. Timing and mechanisms of Tibetan Plateau uplift. Nat Rev Earth Environ. 2022;3(10):652–67.

Article 

Google Scholar
 

Mulch A, Chamberlain CP. The rise and growth of Tibet. Nature. 2006;439(7077):670–1.

Article 
CAS 
PubMed 

Google Scholar
 

Meng Q-R. Origin of the Qinling Mountains(in Chinese). Scientia Sinica Terrae. 2017;47(4):412–20.


Google Scholar
 

Shi X, Yang Z, Dong Y, Zhou B. Tectonic uplift of the Northern Qinling mountains (Central China) during the late cenozoic: evidence from DEM-based geomorphological analysis. J Asian Earth Sci. 2019;184: 104005.

Article 

Google Scholar
 

Blakey RC, Ranney WD. Ancient landscapes of Western North america: A geologic history with paleogeographic maps. Switzerland: Springer; 2018. pp. 140–76.

Book 

Google Scholar
 

Vieites DR, Min M-S, Wake DB. Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc Natl Acad Sci U S A. 2007;104(50):19903–7.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bird P. Formation of the Rocky Mountains, Western United States: a continuum computer model. Science. 1988;239(4847):1501–7.

Article 
CAS 
PubMed 

Google Scholar
 

Cassel EJ, Graham SA, Chamberlain CP. Cenozoic tectonic and topographic evolution of the Northern Sierra Nevada, California,through stable isotope paleoaltimetry in volcanic glass. Geology. 2009;37:547–50.

Article 
CAS 

Google Scholar
 

Mulch A, Graham SA, Chamberlain CP. Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada. Science. 2006;313:87–9.

Article 
CAS 
PubMed 

Google Scholar
 

Jess S, Enkelmann E, Matthews WA. Why are the Appalachians high? New insights from detrital apatite laser ablation (U-Th-Sm)/He dating. Earth Planet Sci Lett. 2022;597: 117794.

Article 
CAS 

Google Scholar