Worldwide trends in diabetes. Since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30.

Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA. 2015;314(10):1021–9.

Article 
CAS 
PubMed 

Google Scholar
 

Charfen MA, Ipp E, Kaji AH, Saleh T, Qazi MF, Lewis RJ. Detection of undiagnosed diabetes and prediabetic states in high-risk emergency department patients. Acad Emerg Med. 2009;16(5):394–402.

Article 
PubMed 

Google Scholar
 

Egi M, Furushima N, Makino S, Mizobuchi S. Glycemic control in acute illness. Korean J Anesthesiol. 2017;70(6):591–5.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Finney SJ, Zekveld C, Elia A, Evans TW. Glucose control and mortality in critically ill patients. JAMA. 2003;290(15):2041–7.

Article 
CAS 
PubMed 

Google Scholar
 

Investigators N-SS, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.

Article 

Google Scholar
 

Chang CH, Wang JL, Wu LC, Chuang LM, Lin HH. Diabetes, glycemic control, and risk of infection morbidity and mortality: a cohort study. Open Forum Infect Dis. 2019;6(10):ofz358.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wandell P, Carlsson AC, Larsson A, Melander O, Wessman T, Arnlov J, Ruge T. The association between BMI and 90-day mortality in patients with and without diabetes seeking care at the emergency department. Ups J Med Sci. 2021;126.

Jansson SP, Fall K, Brus O, Magnuson A, Wandell P, Ostgren CJ, Rolandsson O. Prevalence and incidence of diabetes mellitus: a nationwide population-based pharmaco-epidemiological study in Sweden. Diabet Med. 2015;32(10):1319–28.

Article 
CAS 
PubMed 

Google Scholar
 

Wirehn AB, Ostgren CJ, Carstensen JM. Age and gender differences in the impact of diabetes on the prevalence of ischemic heart disease: a population-based register study. Diabetes Res Clin Pract. 2008;79(3):497–502.

Article 
PubMed 

Google Scholar
 

Rosengren A, Edqvist J, Rawshani A, Sattar N, Franzen S, Adiels M, Svensson AM, Lind M, Gudbjornsdottir S. Excess risk of hospitalisation for heart failure among people with type 2 diabetes. Diabetologia. 2018;61(11):2300–9.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tancredi M, Rosengren A, Svensson AM, Kosiborod M, Pivodic A, Gudbjornsdottir S, Wedel H, Clements M, Dahlqvist S, Lind M. Excess mortality among persons with type 2 diabetes. N Engl J Med. 2015;373(18):1720–32.

Article 
CAS 
PubMed 

Google Scholar
 

Uppal TS, Chehal PK, Fernandes G, Haw JS, Shah M, Turbow S, Rajpathak S, Narayan KMV, Ali MK. Trends and variations in emergency department use associated with diabetes in the US by sociodemographic factors, 2008–2017. JAMA Netw Open. 2022;5(5):e2213867.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang J, Li J, Wen C, Liu Y, Ma H. Predictors of poor glycemic control among type 2 diabetes mellitus patients treated with antidiabetic medications: a cross-sectional study in China. Med (Baltim). 2021;100(43):e27677.

Article 
CAS 

Google Scholar
 

Dhatariya K, Corsino L, Umpierrez GE. Management of diabetes and hyperglycemia in hospitalized patients. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J South Dartmouth (MA) (eds) Endotext. edn. 2000.

Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA Jr., Hasegawa K. Emergency department triage prediction of clinical outcomes using machine learning models. Crit Care. 2019;23(1):64.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Joseph JW, Leventhal EL, Grossestreuer AV, Wong ML, Joseph LJ, Nathanson LA, Donnino MW, Elhadad N, Sanchez LD. Deep-learning approaches to identify critically ill patients at emergency department triage using limited information. J Am Coll Emerg Physicians Open. 2020;1(5):773–81.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sanchez-Salmeron R, Gomez-Urquiza JL, Albendin-Garcia L, Correa-Rodriguez M, Martos-Cabrera MB, Velando-Soriano A, Suleiman-Martos N. Machine learning methods applied to triage in emergency services: a systematic review. Int Emerg Nurs. 2022;60:101109.

Article 
PubMed 

Google Scholar
 

Naemi A, Schmidt T, Mansourvar M, Naghavi-Behzad M, Ebrahimi A, Wiil UK. Machine learning techniques for mortality prediction in emergency departments: a systematic review. BMJ Open. 2021;11(11):e052663.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fernandes M, Vieira SM, Leite F, Palos C, Finkelstein S, Sousa JMC. Clinical decision support systems for triage in the emergency department using intelligent systems: a review. Artif Intell Med. 2020;102:101762.

Article 
PubMed 

Google Scholar
 

Zwawi A, Wessman T, Wandell P, Melander O, Carlsson AC, Ruge T. A simplified clinical frailty scale predicts mortality in emergency department patients with acute dyspnea. Geroscience 2025.

Boemke B, Greenwell BM. Hands-On machine learning with R. Chapman and Hall: New York. 2019.

Book 

Google Scholar
 

Lee S, Kisiel MA, Lindberg P, Wheelock AM, Olofsson A, Eriksson J, Bruchfeld J, Runold M, Wahlstrom L, Malinovschi A, et al. Using machine learning involving diagnoses and medications as a risk prediction tool for post-acute sequelae of COVID-19 (PASC) in primary care. BMC Med. 2025;23(1):251.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wallensten J, Wachtler C, Bogdanovic N, Olofsson A, Kivipelto M, Jonsson L, Petrovic P, Carlsson AC. Machine learning to detect alzheimer’s disease with data on drugs and diagnoses. J Prev Alzheimers Dis. 2025;12(5):100115.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Statist. 2001;29(5):1189–232.

Article 

Google Scholar
 

Brekke IJ, Puntervoll LH, Pedersen PB, Kellett J, Brabrand M. The value of vital sign trends in predicting and monitoring clinical deterioration: a systematic review. PLoS ONE. 2019;14(1):e0210875.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen P, Wang B, Zhao L, Ma S, Wang Y, Zhu Y, Zeng X, Bai Z, Shi B. Machine learning for predicting intrahospital mortality in ST-elevation myocardial infarction patients with type 2 diabetes mellitus. BMC Cardiovasc Disord. 2023;23(1):585.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li C, Zhang Z, Ren Y, Nie H, Lei Y, Qiu H, Xu Z, Pu X. Machine learning based early mortality prediction in the emergency department. Int J Med Inf. 2021;155:104570.

Article 

Google Scholar
 

Lauque D, Khalemsky A, Boudi Z, Ostlundh L, Xu C, Alsabri M, Onyeji C, Cellini J, Intas G, Soni KD et al. Length-of-Stay in the emergency department and In-Hospital mortality: a systematic review and meta-analysis. J Clin Med. 2022;12(1).

Jones S, Moulton C, Swift S, Molyneux P, Black S, Mason N, Oakley R, Mann C. Association between delays to patient admission from the emergency department and all-cause 30-day mortality. Emerg Med J. 2022;39(3):168–73.

Article 
PubMed 

Google Scholar
 

Tazmini K, Nymo SH, Louch WE, Ranhoff AH, Oie E. Electrolyte imbalances in an unselected population in an emergency department: a retrospective cohort study. PLoS ONE. 2019;14(4):e0215673.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ford W, Self WH, Slovis C, McNaughton CD. Diabetes in the emergency department and hospital: acute care of diabetes patients. Curr Emerg Hosp Med Rep. 2013;1(1):1–9.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 diabetes and its impact on the immune system. Curr Diabetes Rev. 2020;16(5):442–9.

PubMed 
PubMed Central 

Google Scholar
 

Erdur A, Guven R, Can D, Gurkan TT, Ak E, Avci A. Prognostic importance of lactate and blood gas parameters in predicting mortality in patients with critical malignancies. Ethiop J Health Sci. 2023;33(2):255–62.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Schork A, Moll K, Haap M, Riessen R, Wagner R. Course of lactate, pH and base excess for prediction of mortality in medical intensive care patients. PLoS ONE. 2021;16(12):e0261564.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Walther LH, Lassen AT, Mogensen CB, Christensen EF, Mikkelsen S. Prehospital blood gas analyses in acute patients treated by a ground-based physician-manned emergency unit: a cohort study. Scand J Trauma Resusc Emerg Med. 2023;31(1):102.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hökenek NM, Seyhan AU, Erdogan MÖ, Tekyol D, Yilmaz E, Korkut S. Evaluation of blood gas analysis as a mortality predictor. South Clin Ist Euras. 2019;30(3):228–31.


Google Scholar
 

Pongmanee W, Vattanavanit V. Can base excess and anion gap predict lactate level in diagnosis of septic shock? Open Access Emerg Med. 2018;10:1–7.

Article 
PubMed 

Google Scholar
 

Wandell P, Ljunggren G, Carlsson AC. The most common diagnoses in primary care, and changes over time, in the total population of Stockholm, Sweden. BMC Prim Care. 2025;26(1):235.

Article 
PubMed 
PubMed Central 

Google Scholar