Singh A. Soil salinization management for sustainable development: a review. J Environ Manage. 2021;277:111383.

CAS 
PubMed 

Google Scholar
 

Li J, Pu L, Han M, et al. Soil salinization research in China: advances and prospects. J Geogr Sci. 2014;24:943–60.


Google Scholar
 

Gang NI, Gu F, BURRILL HM et al. Saline-alkali soil reclamation and utilization in china: progress and prospects. Front Agricultural Sci Eng. 2024;11(2):216.

Zhang Jianfeng J, Li W, Jiaqi, et al. Effects of saline-alkali stress on bacterial community diversity in soybean rhizosphere. J Jilin Agricultural Univ. 2017;39(03):262–9.


Google Scholar
 

Shahid I, Batool S, Hassan M, et al. A decade of progress in rhizoengineering to exploit plant Microbiome for salt stress amelioration. Plant Stress. 2024;11:100325.

CAS 

Google Scholar
 

Albareda M, Dardanelli MS, Sousa C, et al. Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol Lett. 2006;259(1):67–73.

CAS 
PubMed 

Google Scholar
 

Yang J, Kloepper JW, Ryu CM. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009;14(1):1–4.

CAS 
PubMed 

Google Scholar
 

Benidire L, El Khalloufi F, Oufdou K, et al. Phytobeneficial bacteria improve saline stress tolerance in vicia faba and modulate microbial interaction network. Sci Total Environ. 2020;729:139020.

CAS 
PubMed 

Google Scholar
 

Idris I, Yuliar Y. Potential application of Bacillus amyloliquefaciens EB13 inoculant for improving soil fertility and Citrus sinensis growth. Asian J Agric Biology. 2022;2022( 1):202102069. https://doi.org/10.35495/ajab.2021.02.069.

Yasmin H, Naeem S, Bakhtawar M, et al. Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLoS ONE. 2020;15(4):e0231348.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zheng Y, Cao X, Zhou Y, et al. Purines enrich root-associated Pseudomonas and improve wild soybean growth under salt stress. Nat Commun. 2024;15(1):3520.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Santos SS, Rask KA, Vestergård M, et al. Specialized microbiomes facilitate natural rhizosphere microbiome interactions counteracting high salinity stress in plants. Environ Exp Bot. 2021;186:104430.

CAS 

Google Scholar
 

Wang X, Yan X, Liao H. Genetic improvement for phosphorus efficiency in soybean: a radical approach. Ann Botany. 2010;106(1):215–22.


Google Scholar
 

OECD/FAO. OECD-FAO agricultural outlook 2016–2025. Paris: OECD Publishing; 2016. https://doi.org/10.1787/agr_outlook-2016-en.

Book 

Google Scholar
 

Das AK, Anik TR, Rahman MM, et al. Ethanol treatment enhances physiological and biochemical responses to mitigate saline toxicity in soybean. Plants. 2022;11(3):272.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kofsky J, Zhang H, Song BH. The untapped genetic reservoir: the past, current, and future applications of the wild soybean (Glycine soja). Front Plant Sci. 2018;9:949.

PubMed 
PubMed Central 

Google Scholar
 

Wang X. Metabolomics-based study on drought tolerance mechanism of Glycine soja (Glycine soja Sieb.et Zucc. Northeast Normal University; 2020.


Google Scholar
 

Li M, Guo R, Jiao Y, et al. Comparison of salt tolerance in Soja based on metabolomics of seedling roots. Front Plant Sci. 2017;8:1101.

PubMed 
PubMed Central 

Google Scholar
 

Liang Jing. Diversity of wild soybean rhizobia and screening of salt-tolerant and growth-promoting strains in the yellow river delta. Chinese Academy of Agricultural Sciences; 2021.

Xu Jilei W, Xingzhong F. Changes in physiology and photosynthesis of wild soybean induced by salt stress. J Plant Sci. 2022;40(06):829–38.


Google Scholar
 

Yang D, Zhang J, Li M, et al. Metabolomics analysis reveals the salt-tolerant mechanism in Glycine Soja. J Plant Growth Regul. 2017;36:460–71.

CAS 

Google Scholar
 

Wu G, Zhou Z, Chen P, et al. Comparative ecophysiological study of salt stress for wild and cultivated soybean species from the yellow river delta, China. Sci World J. 2014;2014(1):651745.


Google Scholar
 

Lakshmanan V, Ray P, Craven KD. Rhizosphere sampling protocols for Microbiome (16S/18S/ITS rRNA) library Preparation and enrichment for the isolation of drought tolerance-promoting microbes. Methods Mol Biol. 2017;1631:349–62.

Vlasselaer L, Crauwels S, Lievens B, et al. Unveiling the microbiome of hydroponically cultivated lettuce: impact of phytophthora Cryptogea infection on plant-associated microorganisms. FEMS Microbiol Ecol. 2024;100(3):fiae010.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2.


Google Scholar
 

Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13(7):581–3.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package version 2.5-7. Vienna: R Project for Statistical Computing; 2020.


Google Scholar
 

Zeng Q, Hu HW, Ge AH, et al. Plant–microbiome interactions and their impacts on plant adaptation to climate change. J Integr Plant Biol. 2025;67(3):826–44.

PubMed 

Google Scholar
 

Coban O, De Deyn GB, Van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science. 2022;375(6584):abe0725.

PubMed 

Google Scholar
 

Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23(1):25–41.

CAS 
PubMed 

Google Scholar
 

Zhang X, Ma YN, Wang X, et al. Dynamics of rice microbiomes reveal core vertically transmitted seed endophytes. Microbiome. 2022;10(1):216.

PubMed 
PubMed Central 

Google Scholar
 

Abdelfattah A, Tack AJ, Lobato C, et al. From seed to seed: the role of microbial inheritance in the assembly of the plant microbiome. Trends Microbiol. 2023;31(4):346–55.

CAS 
PubMed 

Google Scholar
 

Kuzyakov Y, Razavi BS. Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol Biochem. 2019;135:343–60.

CAS 

Google Scholar
 

Thepbandit W, Athinuwat D. Rhizosphere microorganisms supply availability of soil nutrients and induce plant defense. Microorganisms. 2024;12(3):558.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bai B, Liu W, Qiu X, et al. The root microbiome: community assembly and its contributions to plant fitness. J Integr Plant Biol. 2022;64(2):230–43.

PubMed 

Google Scholar
 

Zeng M, Zhong Y, Cai S, et al. Deciphering the bacterial composition in the rhizosphere of Baphicacanthus Cusia (NeeS) Bremek. Sci Rep. 2018;8(1):15831.

PubMed 
PubMed Central 

Google Scholar
 

Lebeis SL. The potential for give and take in plant–microbiome relationships. Front Plant Sci. 2014;5:287.

PubMed 
PubMed Central 

Google Scholar
 

Thiem D, Gołębiewski M, Hulisz P, et al. How does salinity shape bacterial and fungal microbiomes of alnus glutinosa roots? Front Microbiol. 2018;9:651.

PubMed 
PubMed Central 

Google Scholar
 

Taylor JD, Cunliffe M. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J. 2016;10(9):2118–28.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu F, Bao J. Effects of salt stress on rhizospheric soil bacterial community structure and cucumber yield. Acta Hortic Sin. 2010;37(5):741.

CAS 

Google Scholar
 

Zhang G, Bai J, Tebbe CC, et al. Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environ Microbiol. 2021;23(2):1020–37.

CAS 
PubMed 

Google Scholar
 

Ji M, Kong W, Yue L, et al. Salinity reduces bacterial diversity, but increases network complexity in Tibetan plateau lakes. FEMS Microbiol Ecol. 2019;95(12):fiz190.

CAS 
PubMed 

Google Scholar
 

Zhao Q, Bai J, Gao Y, et al. Shifts in the soil bacterial community along a salinity gradient in the yellow river delta. Land Degrad Dev. 2020;31(16):2255–67.


Google Scholar
 

Baumann K, Dignac MF, Rumpel C, et al. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry. 2013;114:201–12.

CAS 

Google Scholar
 

Rodriguez PA, Rothballer M, Chowdhury SP, et al. Systems biology of plant-microbiome interactions. Mol Plant. 2019;12(6):804–21.

CAS 
PubMed 

Google Scholar
 

Bulgarelli D, Rott M, Schlaeppi K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488(7409):91–5.

CAS 
PubMed 

Google Scholar
 

Rasmann S, Turlings TCJ. Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol. 2016;32:62–8.

CAS 
PubMed 

Google Scholar
 

Lebeis SL, Paredes SH, Lundberg DS, et al. Salicylic acid modulates colonization of the root Microbiome by specific bacterial taxa. Science. 2015;349(6250):860–4.

CAS 
PubMed 

Google Scholar
 

Corral-Lugo A, Daddaoua A, Ortega A, et al. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal. 2016;9(409):ra1-1.

PubMed 

Google Scholar
 

Huang XF, Chaparro JM, Reardon KF, et al. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany. 2014;92(4):267–75.


Google Scholar
 

Williams A, de Vries FT. Plant root exudation under drought: implications for ecosystem functioning. New Phytol. 2020;225(5):1899–905.

PubMed 

Google Scholar
 

Flemming HC, van Hullebusch ED, Neu TR, et al. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol. 2023;21(2):70–86.

CAS 
PubMed 

Google Scholar
 

Wang J, Yasen M, Gong M, et al. Structural variability in the rhizosphere bacterial communities of three halophytes under different levels of salinity-alkalinity. Plant Soil. 2024;502(1):709–23.

CAS 

Google Scholar
 

Xavier JF, da Costa DP, da Silva Gonçalves JV, et al. Different halophytes orchestrate microbial diversity in the rhizosphere of salinity-impacted soils. Appl Soil Ecol. 2024;202:105588.


Google Scholar
 

Zheng W, Xue D, Li X, et al. The responses and adaptations of microbial communities to salinity in farmland soils: a molecular ecological network analysis. Appl Soil Ecol. 2017;120:239–46.


Google Scholar
 

Ladha JK, Reddy PM. Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil. 2003;252:151–67.

CAS 

Google Scholar
 

Vaishnav A, Kasotia A, Choudhary DK. Role of functional bacterial phylum Proteobacteria in Glycine max growth promotion under abiotic stress: a glimpse on case study. Silico Approach Sustainable Agric. 2018:17–49. https://doi.org/10.1007/978-981-13-0347-0_2.

Humayoun SB, Bano N, Hollibaugh JT. Depth distribution of microbial diversity in mono lake, a meromictic soda lake in California. Appl Environ Microbiol. 2003;69(2):1030–42.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Etesami H, Beattie GA. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol. 2018;9:148.

PubMed 
PubMed Central 

Google Scholar
 

Liu SB, Qiao LP, He HL, et al. Optimization of fermentation conditions and rheological properties of exopolysaccharide produced by deep-sea bacterium Zunongwangia profunda SM-A87. PLoS ONE. 2011;6(11):e26825.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Niu SQ, Long Y, Li HY, et al. Microbial diversity in saline alkali soil from Hexi corridor analyzed by illumina miseq high-throughput sequencing system. Microbiol China. 2017;44(9):2067–78.


Google Scholar
 

Bryant DA, Liu Z, Li T et al. Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, and Acidobacteria. Functional genomics and evolution of photosynthetic systems. Dordrecht: Springer Netherlands, 2011: 47–102.

Jiang H, Huang Q, Deng S, et al. Planktonic actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan plateau. Extremophiles. 2010;14:367–76.

PubMed 

Google Scholar
 

Lewin GR, Carlos C, Chevrette MG, et al. Evolution and ecology of actinobacteria and their bioenergy applications. Annu Rev Microbiol. 2016;70(1):235–54.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Barka EA, Vatsa P, Sanchez L, et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev. 2016;80(1):1–43.

PubMed 

Google Scholar
 

Zhou H, Gao Y, Jia X, et al. Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us sandy land, Northwestern China. Soil Biol Biochem. 2020;144:107782.

CAS 

Google Scholar
 

Canfora L, Bacci G, Pinzari F, et al. Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS ONE. 2014;9(9):e106662.

PubMed 
PubMed Central 

Google Scholar
 

Zhou Y, He Z, Lin Q, et al. Salt stress affects the bacterial communities in rhizosphere soil of rice. Front Microbiol. 2024;15:1505368.

PubMed 
PubMed Central 

Google Scholar
 

Ventosa A, de la Haba RR, Sanchez-Porro C, et al. Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol. 2015;25:80–7.

CAS 
PubMed 

Google Scholar
 

Tian XY, Zhang CS. Illumina-based analysis of endophytic and rhizosphere bacterial diversity of the coastal halophyte messerschmidia sibirica. Front Microbiol. 2017;8:2288.

PubMed 
PubMed Central 

Google Scholar
 

Shi X, Zhao X, Ren J, et al. Influence of peanut, sorghum, and soil salinity on microbial community composition in interspecific interaction zone. Front Microbiol. 2021;12:678250.

PubMed 
PubMed Central 

Google Scholar
 

Lorenzi AS, Chia MA. Cyanobacteria’s power trio: auxin, siderophores, and nitrogen fixation to foster thriving agriculture. World J Microbiol Biotechnol. 2024;40(12):381.

PubMed 

Google Scholar
 

Bello AS, Ben-Hamadou R, Hamdi H, et al. Application of cyanobacteria (roholtiella sp.) liquid extract for the alleviation of salt stress in bell pepper (capsicum annuum L.) plants grown in a soilless system. Plants. 2021;11(1):104.

PubMed 
PubMed Central 

Google Scholar
 

Mukhtar S, Mirza BS, Mehnaz S, et al. Impact of soil salinity on the microbial structure of halophyte rhizosphere Microbiome. World J Microbiol Biotechnol. 2018;34:1–17.

CAS 

Google Scholar
 

Ma B, Gong J. A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils. World J Microbiol Biotechnol. 2013;29:2325–34.

CAS 
PubMed 

Google Scholar
 

Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev. 2018;42(3):353–75.

CAS 
PubMed 

Google Scholar
 

Srivastava S, Sharma S. Insight into exopolysaccharide-mediated stress tolerance in plants: a feasible approach towards the development of next-generation bioformulations. J Soil Sci Plant Nutr. 2023;23(1):22–33.

CAS 

Google Scholar
 

Kasotia A, Varma A, Choudhary DK. Pseudomonas-mediated mitigation of salt stress and growth promotion in Glycine max. Agric Res. 2015;4(1):31–41.

CAS 

Google Scholar
 

Egamberdieva D, Jabborova D, Mamadalieva N. Salt tolerant Pseudomonas extremorientalis able to stimulate growth of Silybum marianum under salt stress. Med Aromat Plant Sci Biotechnol. 2013;7:7–10.


Google Scholar
 

Zahir ZA, Ghani U, Naveed M, et al. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol. 2009;191:415–24.

CAS 
PubMed 

Google Scholar
 

Dahal RH, Chaudhary DK, Kim J. Acinetobacter halotolerans sp. nov., a novel halotolerant, alkalitolerant, and hydrocarbon degrading bacterium, isolated from soil. Arch Microbiol. 2017;199:701–10.

CAS 
PubMed 

Google Scholar
 

Kang SM, Hoque MIU, Woo JI, et al. Mitigation of salinity stress on soybean seedlings using indole acetic acid-producing Acinetobacter pittii YNA40. Agriculture (Basel). 2023;13(5):1021.

CAS 

Google Scholar
 

Yang J, Lan L, Jin Y, et al. Mechanisms underlying legume–Rhizobium symbioses. J Integr Plant Biol. 2022;64(2):244–67.

PubMed 

Google Scholar
 

Wang Y, Zhang Z, Zhang P, et al. Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L). Plant Soil. 2016;402:247–61.

CAS 

Google Scholar
 

Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas Putida and NovoSphingobium Sp. Plant Cell Rep. 2018;37(11):1557–69.

CAS 
PubMed 

Google Scholar
 

Boss BL, Wanees AE, Zaslow SJ, et al. Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass ammophila breviligulata. BMC Genomics. 2022;23(1):508.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Leblanc L, Leboeuf C, Leroi F, et al. Comparison between NaCl tolerance response and acclimation to cold temperature in Shewanella putrefaciens. Curr Microbiol. 2003;46:0157–62.

CAS 

Google Scholar
 

Manjunatha BS, Nivetha N, Krishna GK, et al. Plant growth-promoting rhizobacteria Shewanella putrefaciens and cronobacter dublinensis enhance drought tolerance of pearl millet by modulating hormones and stress‐responsive genes. Physiol Plant. 2022;174(2):e13676.

CAS 
PubMed 

Google Scholar
 

Zhang G, Bai J, Zhai Y, et al. Microbial diversity and functions in saline soils: a review from a biogeochemical perspective. J Adv Res. 2024;59:129–40.

PubMed 

Google Scholar
 

Li H, La S, Zhang X, et al. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. ISME J. 2021;15(10):2865–82.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Paul D, Lade H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev. 2014;34(4):737–52.


Google Scholar
 

Numan M, Bashir S, Khan Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res. 2018;209:21–32.

CAS 
PubMed 

Google Scholar