Singh A. Soil salinization management for sustainable development: a review. J Environ Manage. 2021;277:111383.
Li J, Pu L, Han M, et al. Soil salinization research in China: advances and prospects. J Geogr Sci. 2014;24:943–60.
Gang NI, Gu F, BURRILL HM et al. Saline-alkali soil reclamation and utilization in china: progress and prospects. Front Agricultural Sci Eng. 2024;11(2):216.
Zhang Jianfeng J, Li W, Jiaqi, et al. Effects of saline-alkali stress on bacterial community diversity in soybean rhizosphere. J Jilin Agricultural Univ. 2017;39(03):262–9.
Shahid I, Batool S, Hassan M, et al. A decade of progress in rhizoengineering to exploit plant Microbiome for salt stress amelioration. Plant Stress. 2024;11:100325.
Albareda M, Dardanelli MS, Sousa C, et al. Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol Lett. 2006;259(1):67–73.
Yang J, Kloepper JW, Ryu CM. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009;14(1):1–4.
Benidire L, El Khalloufi F, Oufdou K, et al. Phytobeneficial bacteria improve saline stress tolerance in vicia faba and modulate microbial interaction network. Sci Total Environ. 2020;729:139020.
Idris I, Yuliar Y. Potential application of Bacillus amyloliquefaciens EB13 inoculant for improving soil fertility and Citrus sinensis growth. Asian J Agric Biology. 2022;2022( 1):202102069. https://doi.org/10.35495/ajab.2021.02.069.
Yasmin H, Naeem S, Bakhtawar M, et al. Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLoS ONE. 2020;15(4):e0231348.
Zheng Y, Cao X, Zhou Y, et al. Purines enrich root-associated Pseudomonas and improve wild soybean growth under salt stress. Nat Commun. 2024;15(1):3520.
Santos SS, Rask KA, Vestergård M, et al. Specialized microbiomes facilitate natural rhizosphere microbiome interactions counteracting high salinity stress in plants. Environ Exp Bot. 2021;186:104430.
Wang X, Yan X, Liao H. Genetic improvement for phosphorus efficiency in soybean: a radical approach. Ann Botany. 2010;106(1):215–22.
OECD/FAO. OECD-FAO agricultural outlook 2016–2025. Paris: OECD Publishing; 2016. https://doi.org/10.1787/agr_outlook-2016-en.
Das AK, Anik TR, Rahman MM, et al. Ethanol treatment enhances physiological and biochemical responses to mitigate saline toxicity in soybean. Plants. 2022;11(3):272.
Kofsky J, Zhang H, Song BH. The untapped genetic reservoir: the past, current, and future applications of the wild soybean (Glycine soja). Front Plant Sci. 2018;9:949.
Wang X. Metabolomics-based study on drought tolerance mechanism of Glycine soja (Glycine soja Sieb.et Zucc. Northeast Normal University; 2020.
Li M, Guo R, Jiao Y, et al. Comparison of salt tolerance in Soja based on metabolomics of seedling roots. Front Plant Sci. 2017;8:1101.
Liang Jing. Diversity of wild soybean rhizobia and screening of salt-tolerant and growth-promoting strains in the yellow river delta. Chinese Academy of Agricultural Sciences; 2021.
Xu Jilei W, Xingzhong F. Changes in physiology and photosynthesis of wild soybean induced by salt stress. J Plant Sci. 2022;40(06):829–38.
Yang D, Zhang J, Li M, et al. Metabolomics analysis reveals the salt-tolerant mechanism in Glycine Soja. J Plant Growth Regul. 2017;36:460–71.
Wu G, Zhou Z, Chen P, et al. Comparative ecophysiological study of salt stress for wild and cultivated soybean species from the yellow river delta, China. Sci World J. 2014;2014(1):651745.
Lakshmanan V, Ray P, Craven KD. Rhizosphere sampling protocols for Microbiome (16S/18S/ITS rRNA) library Preparation and enrichment for the isolation of drought tolerance-promoting microbes. Methods Mol Biol. 2017;1631:349–62.
Vlasselaer L, Crauwels S, Lievens B, et al. Unveiling the microbiome of hydroponically cultivated lettuce: impact of phytophthora Cryptogea infection on plant-associated microorganisms. FEMS Microbiol Ecol. 2024;100(3):fiae010.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2.
Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13(7):581–3.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package version 2.5-7. Vienna: R Project for Statistical Computing; 2020.
Zeng Q, Hu HW, Ge AH, et al. Plant–microbiome interactions and their impacts on plant adaptation to climate change. J Integr Plant Biol. 2025;67(3):826–44.
Coban O, De Deyn GB, Van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science. 2022;375(6584):abe0725.
Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23(1):25–41.
Zhang X, Ma YN, Wang X, et al. Dynamics of rice microbiomes reveal core vertically transmitted seed endophytes. Microbiome. 2022;10(1):216.
Abdelfattah A, Tack AJ, Lobato C, et al. From seed to seed: the role of microbial inheritance in the assembly of the plant microbiome. Trends Microbiol. 2023;31(4):346–55.
Kuzyakov Y, Razavi BS. Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol Biochem. 2019;135:343–60.
Thepbandit W, Athinuwat D. Rhizosphere microorganisms supply availability of soil nutrients and induce plant defense. Microorganisms. 2024;12(3):558.
Bai B, Liu W, Qiu X, et al. The root microbiome: community assembly and its contributions to plant fitness. J Integr Plant Biol. 2022;64(2):230–43.
Zeng M, Zhong Y, Cai S, et al. Deciphering the bacterial composition in the rhizosphere of Baphicacanthus Cusia (NeeS) Bremek. Sci Rep. 2018;8(1):15831.
Lebeis SL. The potential for give and take in plant–microbiome relationships. Front Plant Sci. 2014;5:287.
Thiem D, Gołębiewski M, Hulisz P, et al. How does salinity shape bacterial and fungal microbiomes of alnus glutinosa roots? Front Microbiol. 2018;9:651.
Taylor JD, Cunliffe M. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J. 2016;10(9):2118–28.
Wu F, Bao J. Effects of salt stress on rhizospheric soil bacterial community structure and cucumber yield. Acta Hortic Sin. 2010;37(5):741.
Zhang G, Bai J, Tebbe CC, et al. Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environ Microbiol. 2021;23(2):1020–37.
Ji M, Kong W, Yue L, et al. Salinity reduces bacterial diversity, but increases network complexity in Tibetan plateau lakes. FEMS Microbiol Ecol. 2019;95(12):fiz190.
Zhao Q, Bai J, Gao Y, et al. Shifts in the soil bacterial community along a salinity gradient in the yellow river delta. Land Degrad Dev. 2020;31(16):2255–67.
Baumann K, Dignac MF, Rumpel C, et al. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry. 2013;114:201–12.
Rodriguez PA, Rothballer M, Chowdhury SP, et al. Systems biology of plant-microbiome interactions. Mol Plant. 2019;12(6):804–21.
Bulgarelli D, Rott M, Schlaeppi K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488(7409):91–5.
Rasmann S, Turlings TCJ. Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol. 2016;32:62–8.
Lebeis SL, Paredes SH, Lundberg DS, et al. Salicylic acid modulates colonization of the root Microbiome by specific bacterial taxa. Science. 2015;349(6250):860–4.
Corral-Lugo A, Daddaoua A, Ortega A, et al. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal. 2016;9(409):ra1-1.
Huang XF, Chaparro JM, Reardon KF, et al. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany. 2014;92(4):267–75.
Williams A, de Vries FT. Plant root exudation under drought: implications for ecosystem functioning. New Phytol. 2020;225(5):1899–905.
Flemming HC, van Hullebusch ED, Neu TR, et al. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol. 2023;21(2):70–86.
Wang J, Yasen M, Gong M, et al. Structural variability in the rhizosphere bacterial communities of three halophytes under different levels of salinity-alkalinity. Plant Soil. 2024;502(1):709–23.
Xavier JF, da Costa DP, da Silva Gonçalves JV, et al. Different halophytes orchestrate microbial diversity in the rhizosphere of salinity-impacted soils. Appl Soil Ecol. 2024;202:105588.
Zheng W, Xue D, Li X, et al. The responses and adaptations of microbial communities to salinity in farmland soils: a molecular ecological network analysis. Appl Soil Ecol. 2017;120:239–46.
Ladha JK, Reddy PM. Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil. 2003;252:151–67.
Vaishnav A, Kasotia A, Choudhary DK. Role of functional bacterial phylum Proteobacteria in Glycine max growth promotion under abiotic stress: a glimpse on case study. Silico Approach Sustainable Agric. 2018:17–49. https://doi.org/10.1007/978-981-13-0347-0_2.
Humayoun SB, Bano N, Hollibaugh JT. Depth distribution of microbial diversity in mono lake, a meromictic soda lake in California. Appl Environ Microbiol. 2003;69(2):1030–42.
Etesami H, Beattie GA. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol. 2018;9:148.
Liu SB, Qiao LP, He HL, et al. Optimization of fermentation conditions and rheological properties of exopolysaccharide produced by deep-sea bacterium Zunongwangia profunda SM-A87. PLoS ONE. 2011;6(11):e26825.
Niu SQ, Long Y, Li HY, et al. Microbial diversity in saline alkali soil from Hexi corridor analyzed by illumina miseq high-throughput sequencing system. Microbiol China. 2017;44(9):2067–78.
Bryant DA, Liu Z, Li T et al. Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, and Acidobacteria. Functional genomics and evolution of photosynthetic systems. Dordrecht: Springer Netherlands, 2011: 47–102.
Jiang H, Huang Q, Deng S, et al. Planktonic actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan plateau. Extremophiles. 2010;14:367–76.
Lewin GR, Carlos C, Chevrette MG, et al. Evolution and ecology of actinobacteria and their bioenergy applications. Annu Rev Microbiol. 2016;70(1):235–54.
Barka EA, Vatsa P, Sanchez L, et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev. 2016;80(1):1–43.
Zhou H, Gao Y, Jia X, et al. Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us sandy land, Northwestern China. Soil Biol Biochem. 2020;144:107782.
Canfora L, Bacci G, Pinzari F, et al. Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS ONE. 2014;9(9):e106662.
Zhou Y, He Z, Lin Q, et al. Salt stress affects the bacterial communities in rhizosphere soil of rice. Front Microbiol. 2024;15:1505368.
Ventosa A, de la Haba RR, Sanchez-Porro C, et al. Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol. 2015;25:80–7.
Tian XY, Zhang CS. Illumina-based analysis of endophytic and rhizosphere bacterial diversity of the coastal halophyte messerschmidia sibirica. Front Microbiol. 2017;8:2288.
Shi X, Zhao X, Ren J, et al. Influence of peanut, sorghum, and soil salinity on microbial community composition in interspecific interaction zone. Front Microbiol. 2021;12:678250.
Lorenzi AS, Chia MA. Cyanobacteria’s power trio: auxin, siderophores, and nitrogen fixation to foster thriving agriculture. World J Microbiol Biotechnol. 2024;40(12):381.
Bello AS, Ben-Hamadou R, Hamdi H, et al. Application of cyanobacteria (roholtiella sp.) liquid extract for the alleviation of salt stress in bell pepper (capsicum annuum L.) plants grown in a soilless system. Plants. 2021;11(1):104.
Mukhtar S, Mirza BS, Mehnaz S, et al. Impact of soil salinity on the microbial structure of halophyte rhizosphere Microbiome. World J Microbiol Biotechnol. 2018;34:1–17.
Ma B, Gong J. A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils. World J Microbiol Biotechnol. 2013;29:2325–34.
Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev. 2018;42(3):353–75.
Srivastava S, Sharma S. Insight into exopolysaccharide-mediated stress tolerance in plants: a feasible approach towards the development of next-generation bioformulations. J Soil Sci Plant Nutr. 2023;23(1):22–33.
Kasotia A, Varma A, Choudhary DK. Pseudomonas-mediated mitigation of salt stress and growth promotion in Glycine max. Agric Res. 2015;4(1):31–41.
Egamberdieva D, Jabborova D, Mamadalieva N. Salt tolerant Pseudomonas extremorientalis able to stimulate growth of Silybum marianum under salt stress. Med Aromat Plant Sci Biotechnol. 2013;7:7–10.
Zahir ZA, Ghani U, Naveed M, et al. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol. 2009;191:415–24.
Dahal RH, Chaudhary DK, Kim J. Acinetobacter halotolerans sp. nov., a novel halotolerant, alkalitolerant, and hydrocarbon degrading bacterium, isolated from soil. Arch Microbiol. 2017;199:701–10.
Kang SM, Hoque MIU, Woo JI, et al. Mitigation of salinity stress on soybean seedlings using indole acetic acid-producing Acinetobacter pittii YNA40. Agriculture (Basel). 2023;13(5):1021.
Yang J, Lan L, Jin Y, et al. Mechanisms underlying legume–Rhizobium symbioses. J Integr Plant Biol. 2022;64(2):244–67.
Wang Y, Zhang Z, Zhang P, et al. Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L). Plant Soil. 2016;402:247–61.
Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas Putida and NovoSphingobium Sp. Plant Cell Rep. 2018;37(11):1557–69.
Boss BL, Wanees AE, Zaslow SJ, et al. Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass ammophila breviligulata. BMC Genomics. 2022;23(1):508.
Leblanc L, Leboeuf C, Leroi F, et al. Comparison between NaCl tolerance response and acclimation to cold temperature in Shewanella putrefaciens. Curr Microbiol. 2003;46:0157–62.
Manjunatha BS, Nivetha N, Krishna GK, et al. Plant growth-promoting rhizobacteria Shewanella putrefaciens and cronobacter dublinensis enhance drought tolerance of pearl millet by modulating hormones and stress‐responsive genes. Physiol Plant. 2022;174(2):e13676.
Zhang G, Bai J, Zhai Y, et al. Microbial diversity and functions in saline soils: a review from a biogeochemical perspective. J Adv Res. 2024;59:129–40.
Li H, La S, Zhang X, et al. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. ISME J. 2021;15(10):2865–82.
Paul D, Lade H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev. 2014;34(4):737–52.
Numan M, Bashir S, Khan Y, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res. 2018;209:21–32.