World Health Organization (WHO). 2023. World Malaria Report 2023.

Thu AM, Phyo AP, Landier J, Parker DM, Nosten FH. Combating multidrug-resistant Plasmodium falciparum malaria. FEBS J. 2017;284:2569–78. https://doi.org/10.1111/febs.14127.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

WHO. 2017. Insecticide resistance. https://www.who.int/teams/control-of-neglected-tropical-diseases/interventions/strategies/vector-control/insecticide-resistance. Accessed 12 Dec 2024.

WHO, WHO Malaria Policy Advisory Committee (MPAC). 2016. 2016. https://www.who.int/publications/i/item/WHO-HTM-GMP-MPAC-2016.14. Accessed 20 Sept 2024.

WHO. 2014. WHO guidance for countries on combining indoor residual spraying and long-lasting insecticidal nets. 2014. https://iris.who.int/bitstream/handle/10665/338635/WHO-HTM-GMP-MPAC-2014.2-eng.pdf?sequence=1&isAllowed=y. Accessed 22 October 2024.

Wongsrichanalai C, Sibley CH. Fighting drug-resistant Plasmodium falciparum: the challenge of artemisinin resistance. Clin Microbiol Infect. 2013;19:908–16. https://doi.org/10.1111/1469-0691.12316.

Article 
CAS 
PubMed 

Google Scholar
 

Asare KK, Boampong JN, Duah NO, Afoakwah R, Sehgal R, Quashie NB. Synergism between Pfcrt and Pfmdr1 genes could account for the slow recovery of chloroquine-sensitive plasmodium falciparum strains in Ghana after chloroquine withdrawal. J Infect Public Health. 2017;10:110–9. https://doi.org/10.1016/j.jiph.2016.02.004.

Article 
PubMed 

Google Scholar
 

Fadel AN, Ibrahim SS, Tchouakui M, Terence E, Wondji MJ, Tchoupo M, et al. A combination of metabolic resistance and high frequency of the 1014F Kdr mutation is driving pyrethroid resistance in the Anopheles coluzzii population from the Guinea savanna of Cameroon. Parasit Vectors. 2019;12:1–13. https://doi.org/10.1186/s13071-019-3523-7.

Article 
CAS 

Google Scholar
 

Ndiaye D, Daily JP, Sarr O, Ndir O, Gaye O, Mboup S, et al. Mutations in plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase genes in Senegal. Trop Med Int Health. 2005;10:1176–9. https://doi.org/10.1111/j.1365-3156.2005.01506.x.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ngassa-Mbenda HG, Das A. Analysis of genetic diversity in the chloroquine-resistant gene Pfcrt in field Plasmodium falciparum isolates from five regions of Southern Cameroon. Infect Genet Evol. 2016;44:450–8. https://doi.org/10.1016/j.meegid.2016.07.003.

Article 
CAS 
PubMed 

Google Scholar
 

Opondo KO, Jawara M, Cham S, Jatta E, Jarju L, Camara M, et al. Status of insecticide resistance in Anopheles Gambiae (s.l.) of the Gambia. Parasites Vectors. 2019;12:1–8. https://doi.org/10.1186/s13071-019-3538-0.

Article 
CAS 

Google Scholar
 

The malERA Refresh Consultative Panel on Tools for Malaria, E, malERA. An updated research agenda for insecticide and drug resistance in malaria elimination and eradication. PLoS Med. 2017;14:e1002450. https://doi.org/10.1371/journal.pmed.1002450.

Article 

Google Scholar
 

Weedall GD, Mugenzi LMJ, Menze BD, Tchouakui M, Ibrahim SS, Amvongo-Adjia N, et al. A cytochrome P450 allele confers pyrethroid resistance on a major African malaria vector, reducing insecticide-treated bednet efficacy. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aat7386.

Article 
PubMed 

Google Scholar
 

Asua V, Conrad MD, Aydemir O, Duvalsaint M, Legac J, Duarte E, et al. Changing prevalence of potential mediators of aminoquinoline, antifolate, and artemisinin resistance across Uganda. J Infect Dis. 2021;223:985–94. https://doi.org/10.1093/infdis/jiaa687.

Article 
CAS 
PubMed 

Google Scholar
 

Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana SI, Yamauchi M, et al. Evidence of artemisinin-resistant malaria in Africa. N Engl J Med. 2021;385:1163–71. https://doi.org/10.1056/nejmoa2101746.

Article 
CAS 
PubMed 

Google Scholar
 

Fukuda N, Tachibana SI, Ikeda M, Sakurai-Yatsushiro M, Balikagala B, Katuro OT, et al. Ex vivo susceptibility of Plasmodium falciparum to antimalarial drugs in Northern Uganda. Parasitol Int. 2021;81:102277. https://doi.org/10.1016/j.parint.2020.102277.

Article 
CAS 
PubMed 

Google Scholar
 

Rasmussen SA, Ceja FG, Conrad MD, Tumwebaze PK, Byaruhanga O, Katairo T, et al. Changing antimalarial drug sensitivities in Uganda. Antimicrob Agents Chemother. 2017;61:e01516. https://doi.org/10.1128/AAC.01516-17.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tumwebaze PK, Katairo T, Okitwi M, Byaruhanga O, Orena S, Asua V, et al. Drug susceptibility of plasmodium falciparum in Eastern Uganda: a longitudinal phenotypic and genotypic study. Lancet Microbe. 2021;2(9):e441. https://doi.org/10.1016/s2666-5247(21)00085-9.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Alonso PL, Sacarlal J, Aponte JJ, Leach A, Macete E, Milman J, et al. Efficacy of the RTS, S/AS02A vaccine against plasmodium falciparum infection and disease in young African children: randomized controlled trial. Lancet. 2004;364:1411–20.

Article 
CAS 
PubMed 

Google Scholar
 

Chauhan VS, Yazdani SS, Gaur. Malaria vaccine development based on merozoite surface proteins. Hum Vaccin. 2010;6:757–62. https://doi.org/10.4161/hv.6.9.12468.

Article 
CAS 

Google Scholar
 

Gray JC, Corran PH, Mangia E, Gaunt MW, Li Q, Tetteh KKA, et al. Profiling the antibody immune response against blood stage malaria vaccine candidates. Clin Chem. 2007;53:1244–53. https://doi.org/10.1373/clinchem.2006.081695.

Article 
CAS 
PubMed 

Google Scholar
 

Nunes JK, Woods C, Carter T, Raphael T, Morin MJ, Diallo D, et al. Development of a transmission-blocking malaria vaccine: progress, challenges, and the path forward. Vaccine. 2014;32:5531–9. https://doi.org/10.1016/j.vaccine.2014.07.030.

Article 
PubMed 

Google Scholar
 

Theisen M, Jore MM, Sauerwein R. Towards clinical development of a Pfs48/45-based transmission-blocking malaria vaccine. Expert Rev Vaccines. 2017;16:329–36. https://doi.org/10.1080/14760584.2017.1276833.

Article 
CAS 
PubMed 

Google Scholar
 

Wu Y, Ellis RD, Shaffer D, Fontes E, Malkin EM, Mahanty S, et al. Phase 1 trial of malaria transmission-blocking vaccine candidates Pfs25 and Pvs 25 formulated with Montanide ISA 51. PLoS ONE. 2008;3:e2636. https://doi.org/10.1371/journal.pone.0002636.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Arnott A, Wapling J, Mueller I, Ramsland PA, Siba PM, Reeder JC, et al. Distinct patterns of diversity, population structure, and evolution in the AMA1 genes of sympatric Plasmodium falciparum and Plasmodium vivax populations of Papua New Guinea from an area of similarly high transmission. Malar J. 2014;13:233. https://doi.org/10.1186/1475-2875-13-233.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Esmaeili Rastaghi AR, Nedaei F, Nahrevanian H, Hoseinkhan N. Genetic diversity and effect of natural selection at apical membrane antigen-1 (AMA-1) among Iranian plasmodium Vivax isolates. Folia Parasitol (Praha). 2014;61:385–93. https://doi.org/10.14411/fp.2014.048.

Article 
CAS 
PubMed 

Google Scholar
 

Ochwedo KO, Ariri FO, Otambo WO, Magomere EO, Debrah I, Onyango SA, et al. Rare alleles and signatures of selection on the immunodominant domains of Pfs230 and Pfs48/45 in malaria parasites from Western Kenya. Front Genet. 2022;13:867906. https://doi.org/10.3389/fgene.2022.867906.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pirahmadi S, Zakeri S, Mehrizi AA, Djadid ND. Analysis of genetic diversity and population structure of gene encoding cell-traversal protein for ookinetes and sporozoites (CelTOS) vaccine candidate antigen in global plasmodium falciparum populations. Infect Genet Evol. 2018;59:113–25. https://doi.org/10.1016/j.meegid.2018.01.023.

Article 
CAS 
PubMed 

Google Scholar
 

Osier FH, Mackinnon MJ, Crosnier C, Fegan G, Wanaguru M, Ogada E, et al. New antigens for multi-component blood-stage vaccines against plasmodium falciparum malaria. Sci Transl Med. 2016;6. https://doi.org/10.1126/scitranslmed.3008705.

Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomized controlled trial. Lancet. 2021;397:1809–18. https://doi.org/10.1016/S0140-6736(21)00943-0.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

World Health Organization (WHO). 2024. Malaria Vaccines (RTS,S and R21) 2023https://www.who.int/news-room/questions-and-answers/item/q-a-on-rts-s-malaria-vaccine#:~:text=Malaria%20vaccines%20should%20be%20provided%20to%20children%20in%20a%20schedule,age%20based%20on%20operational%20considerations. Accessed 2 Apr 2025.

World Health Organisation (WHO). 2024. Nigeria introduces the R21 vaccine in a pivotal move for malaria control. https://www.afro.who.int/countries/nigeria/news/nigeria-introduces-r21-vaccine-pivotal-move-malaria-control. Nigeria introduces the R21 vaccine in a pivotal move for malaria control. Accessed 2 Apr 2025.

Abdulkadir BI, Ajayi IO. Willingness to accept malaria vaccine among caregivers of under-5 children in Ibadan North local government Area, Nigeria. MalariaWorld J. 2015;6.

Asmare G. Willingness to accept malaria vaccine among caregivers of under-5 children in Southwest Ethiopia: a community-based cross-sectional study. Malar J. 2022;21:1–8. https://doi.org/10.1186/s12936-022-04164-z.

Article 

Google Scholar
 

Chukwuocha UM, Okorie PC, Iwuoha GN, Ibe SN, Dozie IN, Nwoke BE. Awareness, perceptions, and intent to comply with the prospective malaria vaccine in parts of South Eastern Nigeria. Malar J. 2018;17:1–7. https://doi.org/10.1186/s12936-018-2335-0.

Article 

Google Scholar
 

Maduka D, Adaobi IO, Henrietta U. Acceptance of malaria vaccine by a rural community in Nigeria. Niger J Med. 2018;27:199. https://doi.org/10.4103/1115-2613.278781.

Article 

Google Scholar
 

Mumtaz H, Nadeem A, Bilal W, Ansar F, Saleem S, Khan QA. Acceptance, availability, and feasibility of RTS, S/AS01 malaria vaccine: a review. Immunity Inflamm Dis. 2023. https://doi.org/10.1002/iid3.899.

Article 

Google Scholar
 

Musa-Booth T, Enobun B, Agbomola A, Shiff C. Knowledge, attitude, and willingness to accept the RTS, S malaria vaccine among mothers in Abuja, Nigeria. Ann Afr Med Res. 2021;4. https://doi.org/10.4081/aamr.2021.128.

Tabiri D, Ouédraogo JCRP, Nortey PA. Factors associated with malaria vaccine uptake in Sunyani Municipality, Ghana. Malar J. 2021;20:1–18. https://doi.org/10.1186/s12936-021-03857-1.

Article 

Google Scholar
 

Federal Ministry of Health. Abuja, Nigeria. National Guidelines for Diagnosis and Treatment of Malaria, 4th Edition. 79 pp.

Chung Y, Schamel J, Fisher A, Frew PM. Influences on immunization decision-making among US parents of young children. Matern Child Health J. 2017;21:2178–87.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Warner EL, Ding Q, Pappas L, Bodson J, Fowler B, Mooney R, et al. Health care providers’ knowledge of HPV vaccination, barriers, and strategies in a state with low HPV vaccine receipt: mixed-methods study. JMIR Cancer. 2017;3:e12 ([Google Scholar] [CrossRef] [PubMed]).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ozsurekci Y, Karadag-Oncel E, Bayhan C, Celik M, Ozkaya-Parlakay A, Arvas M. Knowledge and attitudes about human papillomaviruses and immunization among Turkish pediatricians. Asian Pac J Cancer Prev. 2013;14:7325–9.

Article 
PubMed 

Google Scholar
 

Pelullo CP, Della-Polla G, Napolitano F, Di-Giuseppe G, Angelillo IF. Healthcare workers’ knowledge, attitudes, and practices about vaccinations: a cross-sectional study in Italy. Vaccines. 2020;8:148.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Elkin Z, Cohen EJ, Goldberg JD, Gillespie C, Li X, Jung J, et al. Studying physician knowledge, attitudes, and practices regarding the herpes zoster vaccine to address perceived barriers to vaccination. Cornea. 2013;32(7):976–81.

Article 
PubMed 

Google Scholar
 

Hammershaimb EA, Berry AA. Pre-erythrocytic malaria vaccines: RTS, S, R21, and beyond. Expert Rev Vaccines. 2024;23(1):49–52.

Article 
CAS 
PubMed 

Google Scholar
 

Adeleke OT, Oyenuga A, Slusher TM, Gbadero DA. Cluster-randomized controlled trial of intermittent preventive treatment in infancy using sulfadoxine-pyrimethamine (SP-IPTi): a pilot study in Nigeria. J Trop Ped. 2023;Feb 1;69(1):fmad001.

Article 

Google Scholar
 

Schneeberg A, Bettinger JA, McNeil S, Ward BJ, Dionne M, Cooper C, et al. Knowledge, attitudes, beliefs and behaviours of older adults about pneumococcal immunization, a public health agency of Canada/Canadian institutes of health research influenza research network (PCIRN) investigation. BMC Public Health. 2014;14:442.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Eilers R, Krabbe PFM, de Melker HE. Factors affecting the uptake of vaccination by the elderly in Western society. Prev Med. 2014;69:224–34.

Article 
CAS 
PubMed 

Google Scholar
 

Gargano LM, Herbert NL, Painter JE, Sales JM, Morfaw C, Rask K, et al. Impact of a physician recommendation and parental immunization attitudes on receipt or intention to receive adolescent vaccines. Hum Vaccin Immunother. 2013;9:2627–33.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Brewer NT, Fazekas KI. Predictors of HPV vaccine acceptability: a theory-informed, systematic review. Prev Med. 2007;45:107–14.

Article 
PubMed 

Google Scholar
 

Smith PJ, Kennedy AM, Wooten K, Gust DA, Pickering LK. Association between health care providers’ influence on parents who have concerns about vaccine safety and vaccination coverage. Pediatrics. 2006;118:e1287–92.

Article 
PubMed 

Google Scholar
 

Dubé E, Gagnon D, Kaminsky K, Green CR, Ouakki M, Bettinger JA. Vaccination against influenza in pregnancy: a survey of Canadian maternity care providers. J Obstet Gynaecol Can. 2019;41:479–88.

Article 
PubMed 

Google Scholar
 

Karlsson LC, Lewandowsky S, Antfolk J, Salo P, Lindfelt M, Oksanen T. The association between vaccination confidence, vaccination behavior, and willingness to recommend vaccines among Finnish healthcare workers. PLoS ONE. 2019;14 (10):e0224330.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Verger P, Fressard L, Collange F, Gautier A, Jestin C, Launay O, et al. Vaccine hesitancy among general practitioners and its determinants during controversies: a national cross-sectional survey in France. EBioMedicine. 2015;2:891–7.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ye L, Chen J, Fang T, Cui J, Li H, Ma R. Determinants of healthcare workers’ willingness to recommend the seasonal influenza vaccine to diabetic patients: a cross-sectional survey in Ningbo, China. Hum Vaccin Immunother. 2018;14:2979–86.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Esteves-Jaramillo A, Omer SB, Gonzalez-Diaz E, Salmon DA, Hixson B, Navarro F. Acceptance of a vaccine against novel influenza A (H1N1) virus among health care workers in two major cities in Mexico. Arch Med Res. 2009;40:705–11.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dubé E, Gilca V, Sauvageau C, Bradet R, Lavoie F, Boulianne N, et al. Acute otitis media and its prevention by immunization: a survey of Canadian pediatricians’ knowledge, attitudes and beliefs. Hum Vaccin. 2011;7:429–35.

Article 
PubMed 

Google Scholar
 

Lehmann BA, Eilers R, Mollema L, Ferreira J, de Melker HE. The intention of Dutch general practitioners to offer vaccination against Pneumococcal Disease, herpes Zoster and pertussis to people aged 60 years and older. BMC Geriatr. 2017;17:122.

Article 
PubMed 
PubMed Central 

Google Scholar