Bertone, G. & Hooper, D. History of dark matter. Rev. Mod. Phys. 90, 045002 (2018).
Salucci, P. The distribution of dark matter in galaxies. Astron. Astrophys. Rev. 27, 2 (2019).
Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large scale structure with cold dark matter. Nature 311, 517–525 (1984).
Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985).
Peebles, P. J. E. Large scale background temperature and mass fluctuations due to scale invariant primeval perturbations. Astrophys. J. Lett. 263, L1–L5 (1982).
Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Supp. Series 208, 19 (2013).
Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Gleyzes, J., Langlois, D., Mancarella, M. & Vernizzi, F. Effective theory of interacting dark energy. J. Cosmol. Astropart. Phys. 08, 054 (2015).
Barkana, R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 555, 71–74 (2018).
Schewtschenko, J. A. et al. Dark matter–radiation interactions: the structure of Milky Way satellite galaxies. Mon. Not. R. Astron. Soc. 461, 2282–2287 (2016).
Diacoumis, J. A. D. & Wong, Y. Y. Y. On the prior dependence of cosmological constraints on some dark matter interactions. J. Cosmol. Astropart. Phys. 05, 025 (2019).
Diamanti, R., Giusarma, E., Mena, O., Archidiacono, M. & Melchiorri, A. Dark Radiation and interacting scenarios. Phys. Rev. D 87, 063509 (2013).
Buen-Abad, M. A., Marques-Tavares, G. & Schmaltz, M. Non-Abelian dark matter and dark radiation. Phys. Rev. D 92, 023531 (2015).
Pettorino, V., Amendola, L., Baccigalupi, C. & Quercellini, C. Constraints on coupled dark energy using CMB data from WMAP and south pole telescope. Phys. Rev. D 86, 103507 (2012).
Pourtsidou, A., Skordis, C. & Copeland, E. J. Models of dark matter coupled to dark energy. Phys. Rev. D 88, 083505 (2013).
Costa, A. A., Olivari, L. C. & Abdalla, E. Quintessence with Yukawa Interaction. Phys. Rev. D 92, 103501 (2015).
Spergel, D. N. & Steinhardt, P. J. Observational evidence for selfinteracting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).
Archidiacono, M., Castorina, E., Redigolo, D. & Salvioni, E. Unveiling dark fifth forces with linear cosmology. J. Cosmol. Astropart. Phys. 10, 074 (2022).
Tulin, S. & Yu, H.-B. Dark matter self-interactions and small scale structure. Phys. Rept. 730, 1–57 (2018).
Behnke, E. et al. Final results of the PICASSO dark matter search experiment. Astropart. Phys. 90, 85–92 (2017).
Abdelhameed, A. H. et al. First results from the CRESST-III low-mass dark matter program. Phys. Rev. D 100, 102002 (2019).
Agnes, P. et al. Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50. Phys. Rev. D 107, 063001 (2023).
Aalbers, J. et al. First dark matter search results from the LUX-ZEPLIN (LZ) experiment. Phys. Rev. Lett. 131, 041002 (2023).
Gaskins, J. M. A review of indirect searches for particle dark matter. Contemp. Phys. 57, 496–525 (2016).
Conrad, J. & Reimer, O. Indirect dark matter searches in gamma and cosmic rays. Nature Phys. 13, 224–231 (2017).
RodrÃguez, A. B. et al. Prospects on searches for baryonic dark matter produced in b-hadron decays at LHCb. Eur. Phys. J. C 81, 964 (2021).
Hayrapetyan, A. et al. Dark sector searches with the CMS experiment. Phys. Rept. 1115, 448 (2025).
Aad, G. et al. The quest to discover supersymmetry at the ATLAS experiment. Phys. Rep. 1116, 261–300 (2025).
Aad, G. et al. Exploration at the high-energy frontier: ATLAS Run 2 searches investigating the exotic jungle beyond the Standard Model. Phys. Rep. 1116, 301–385 (2025).
Ariga, A. et al. FASER’s physics reach for long-lived particles. Phys. Rev. D 99, 095011 (2019).
Aaij, R. et al. Search for \({A}^{{\prime} }\to {\mu }^{+}{\mu }^{-}\) decays. Phys. Rev. Lett. 124, 041801 (2020).
Aad, G. et al. ATLAS searches for additional scalars and exotic Higgs boson decays with the LHC Run 2 dataset. Phys. Rep. 1116, 184–260 (2025).
Robertson, A. et al. Observable tests of self-interacting dark matter in galaxy clusters: cosmological simulations with SIDM and baryons. Mon. Not. R. Astron. Soc. 488, 3646–3662 (2019).
Eckert, D. et al. Constraints on dark matter self-interaction from the internal density profiles of X-COP galaxy clusters. Astron. Astrophys. 666, A41 (2022).
Harvey, D., Chisari, N. E., Robertson, A. & McCarthy, I. G. The impact of self-interacting dark matter on the intrinsic alignments of galaxies. Mon. Not. R. Astron. Soc. 506, 441–451 (2021).
Desmond, H. & Ferreira, P. G. Galaxy morphology rules out astrophysically relevant Hu-Sawicki f(R) gravity. Phys. Rev. D 102, 104060 (2020).
Kesden, M. & Kamionkowski, M. Galilean equivalence for galactic dark matter. Phys. Rev. Lett. 97, 131303 (2006).
Kaiser, N. Clustering in real space and in redshift space. Mon. Not. R. Astron. Soc. 227, 1–27 (1987).
Hamilton, A. J. S. Linear Redshift Distortions: A Review, 185–275 (Springer, 1998).
Tutusaus, I., Bonvin, C. & Grimm, N. Measurement of the Weyl potential evolution from the first three years of dark energy survey data. Nat. Commun. 15, 9295 (2024).
Bonvin, C. & Fleury, P. Testing the equivalence principle on cosmological scales. J. Cosmol. Astropart. Phys. 05, 061 (2018).
Castello, S., Zheng, Z., Bonvin, C. & Amendola, L. Testing the equivalence principle across the Universe: a model-independent approach with galaxy multi-tracing. Phys. Rev. D 111, 12 (2025).
Sobral-Blanco, D. & Bonvin, C. Measuring the distortion of time with relativistic effects in large-scale structure. Mon. Not. R. Astron. Soc. 519, L39–L44 (2022).
Kehagias, A., Noreña, J., Perrier, H. & Riotto, A. Consequences of symmetries and consistency relations in the large-scale structure of the universe for non-local bias and modified gravity. Nucl. Phys. B 883, 83–106 (2014).
Creminelli, P., Gleyzes, J., Hui, L., Simonović, M. & Vernizzi, F. Single-field consistency relations of large scale structure. Part III: test of the equivalence principle. JCAP 06, 009 (2014).
Dark Energy Spectroscopic Instrument. DESI Collaboration. https://www.desi.lbl.gov (2025).
Euclid Survey. Euclid Consortium. https://www.euclid-ec.org (2025).
Square Kilometer Array Observatory. SKAO. https://www.skao.int/en (2025).
Abbott, T. M. C. et al. Dark Energy Survey Year 3 results: cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 105, 023520 (2022).
Howlett, C. et al. 2MTF – VI. Measuring the velocity power spectrum. Mon. Not. Roy. Astron. Soc. 471, 3135–3151 (2017).
Huterer, D., Shafer, D., Scolnic, D. & Schmidt, F. Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities. JCAP 05, 015 (2017).
Hudson, M. J. & Turnbull, S. J. The growth rate of cosmic structure from peculiar velocities at low and high redshifts. Astrophys. J. Lett. 751, L30 (2013).
Turnbull, S. J. et al. Cosmic flows in the nearby universe from Type Ia Supernovae. Mon. Not. Roy. Astron. Soc. 420, 447–454 (2012).
Davis, M. et al. Local gravity versus local velocity: solutions for β and nonlinear bias. Mon. Not. Roy. Astron. Soc. 413, 2906 (2011).
Song, Y.-S. & Percival, W. J. Reconstructing the history of structure formation using Redshift Distortions. JCAP 10, 004 (2009).
Blake, C. et al. Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure. Mon. Not. Roy. Astron. Soc. 436, 3089 (2013).
Alam, S. et al. Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Phys. Rev. D 103, 083533 (2021).
Blake, C. et al. The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1. Mon. Not. Roy. Astron. Soc. 425, 405–414 (2012).
Pezzotta, A. et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS): the growth of structure at 0.5 < z < 1.2 from redshift-space distortions in the clustering of the PDR-2 final sample. Astron. Astrophys. 604, A33 (2017).
Okumura, T. et al. The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ~ 1.4. Publ. Astron. Soc. Jap. 68, 38 (2016).
Zhao, G.-B. et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: a tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights. Mon. Not. Roy. Astron. Soc. 482, 3497–3513 (2019).
Rubin Observatory. LSST. https://rubinobservatory.org (2025).
Khoury, J. & Weltman, A. Chameleon fields: awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93, 171104 (2004).
Hinterbichler, K. & Khoury, J. Symmetron fields: screening long-range forces through local symmetry restoration. Phys. Rev. Lett. 104, 231301 (2010).
Grimm, N., Bonvin, C. & Tutusaus, I. Testing general relativity through the EG statistic using the weyl potential and galaxy velocities. Phys. Rev. Lett. 133, 211004 (2024).
Adame, A. G. et al. DESI 2024 V: full-shape galaxy clustering from Galaxies and Quasars. JCAP 09, 008 (2025).
Akaike, H. A new look at the statistical model identification. IEEE Trans. Automatic Control 19, 716–723 (1974).
Castello, S., Wang, Z., Dam, L., Bonvin, C. & Pogosian, L. Disentangling modified gravity from a dark force with gravitational redshift. Phys. Rev. D 110, 103523 (2024).
Bottaro, S., Castorina, E., Costa, M., Redigolo, D. & Salvioni, E. Unveiling dark forces with the Large Scale Structure of the Universe. Phys. Rev. Lett. 132, 201002 (2024).
Wang, Z., Mirpoorian, S. H., Pogosian, L., Silvestri, A. & Zhao, G.-B. New MGCAMB tests of gravity with CosmoMC and Cobaya. JCAP 08, 038 (2023).
Chamings, F. N., Avgoustidis, A., Copeland, E. J., Green, A. M. & Pourtsidou, A. Understanding the suppression of structure formation from dark matter-dark energy momentum coupling. Phys. Rev. D 101, 043531 (2020).
Aghamousa, A. et al. The DESI experiment part I: science,targeting, and survey design. Preprint at https://arxiv.org/abs/1611.00036 (2016).
Tutusaus, I., Sobral-Blanco, D. & Bonvin, C. Combining gravitational lensing and gravitational redshift to measure the anisotropic stress with future galaxy surveys. Phys. Rev. D 107, 083526 (2023).
Perenon, L. et al. Multi-tasking the growth of cosmological structures. Phys. Dark Univ. 34, 100898 (2021).
Amendola, L., Kunz, M. & Sapone, D. Measuring the dark side (with weak lensing). JCAP 0804, 013 (2008).
Daniel, S. F., Caldwell, R. R., Cooray, A. & Melchiorri, A. Large scale structure as a probe of gravitational slip. Phys. Rev. D77, 103513 (2008).
Bonvin, C. & Pogosian, L. Modified Einstein versus modified Euler for dark matter. Nature Astron. 7, 1127–1134 (2023).
Archidiacono, M. et al. Constraining dark matter-dark radiation interactions with CMB, BAO, and Lyman-α. J. Cosmol. Astropart. Phys. 10, 055 (2019).
Castello, S., Grimm, N. & Bonvin, C. Rescuing constraints on modified gravity using gravitational redshift in large-scale structure. Phys. Rev. D 106, 083511 (2022).
Bertschinger, E. & Zukin, P. Distinguishing modified gravity from dark energy. Phys. Rev. D 78, 024015 (2008).
Pogosian, L., Silvestri, A., Koyama, K. & Zhao, G.-B. How to optimally parametrize deviations from general relativity in the evolution of cosmological perturbations. Phys. Rev. D 81, 104023 (2010).
Adame, A. G. et al. DESI 2024 VII: cosmological constraints from the full-shape modeling of clustering measurements. JCAP 07, 028 (2025).
Sloan Digital Sky Survey. SDSS Collaboration. https://www.sdss.org/ (2025).
WiggleZ Dark Energy Survey. WiggleZ Collaboration. https://wigglez.swin.edu.au/site/forward.html (2025).
Satpathy, S. et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: on the measurement of growth rate using galaxy correlation functions. Mon. Not. R. Astron. Soc. 469, 1369–1382 (2017).
Schirra, A. P., Quartin, M. & Amendola, L. A model-independent measurement of the expansion and growth rates from BOSS using the FreePower method. Phys. Dark Universe 49, 102033 (2025).
Blanchard, A. et al. Euclid preparation: VII. Forecast validation for Euclid cosmological probes. Astron. Astrophys. 642, A191 (2020).
Amendola, L., Pietroni, M. & Quartin, M. Fisher matrix for the one-loop galaxy power spectrum: measuring expansion and growth rates without assuming a cosmological model. JCAP 11, 023 (2022).
Asgari, M. et al. KiDS-1000 cosmology: cosmic shear constraints and comparison between two point statistics. Astron. Astrophys. 645, A104 (2021).
Abbott, T. M. C. et al. Dark energy survey year 1 results: constraints on extended cosmological models from galaxy clustering and weak lensing. Phys. Rev. D 99, 123505 (2019).
Abbott, T. M. C. et al. Dark energy survey year 3 results: constraints on extensions to ΛCDM with weak lensing and galaxy clustering. Phys. Rev. D 107, 083504 (2023).
Grimm, N. Fifth force from fhat and Jhat. Zenodo, https://doi.org/10.5281/zenodo.17078450 (2025).
Lewis, A., Challinor, A. & Lasenby, A. Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J. 538, 473–476 (2000).