Farley, K. A. et al. Mars 2020 mission overview. Space Sci. Rev. https://doi.org/10.1007/s11214-020-00762-y (2020).
Farley, K. A. et al. Aqueously altered igneous rocks sampled on the floor of Jezero Crater, Mars. Science 377, eabo2196 (2022).
Simon, J. I. et al. Samples collected from the floor of Jezero Crater with the Mars 2020 Perseverance rover. J. Geophys. Res. Planets https://doi.org/10.1029/2022JE007474 (2023).
Mangold, N. et al. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero Crater, Mars. Science 374, 711–717 (2021).
Stack, K. M. et al. Sedimentology and stratigraphy of the Shenandoah Formation, Western Fan, Jezero Crater, Mars. J. Geophys. Res. Planets https://doi.org/10.1029/2023JE008187 (2024).
Bosak, T. et al. Astrobiological potential of rocks acquired by the Perseverance rover at a sedimentary fan front in Jezero Crater, Mars. AGU Adv. https://doi.org/10.1029/2024AV001241 (2024).
Horgan, B. H. N., Anderson, R. B., Dromart, G., Amador, E. S. & Rice, M. S. The mineral diversity of Jezero Crater: evidence for possible lacustrine carbonates on Mars. Icarus https://doi.org/10.1016/j.icarus.2019.113526 (2020).
Goudge, T. A., Mustard, J. F., Head, J. W., Fassett, C. I. & Wiseman, S. M. Assessing the mineralogy of the watershed and fan deposits of the Jezero Crater paleolake system, Mars. J. Geophys. Res. Planets 120, 775–808 (2015).
Steele, A. et al. Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard. Meteorit. Planet. Sci. 42, 1549–1566 (2007).
Steele, A. et al. Macromolecular carbon in Martian basalts. Meteorit. Planet. Sci. 47, A357–A357 (2012).
Bhartia, R. et al. Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) investigation. Space Sci. Rev. 217, 58 (2021).
Scheller, E. L. et al. Inorganic interpretation of luminescent materials encountered by the Perseverance rover on Mars. Sci. Adv. 10, eadm8241 (2024).
Jones, M. W. M. et al. In situ crystallographic mapping constrains sulfate precipitation and timing in Jezero Crater, Mars. Sci. Adv. 11, eadt3048 (2025).
Orenstein, B. J. et al. In-situ mapping of monocrystalline regions on Mars. Icarus 420, 116202 (2024).
Tice, M. M. et al. Alteration history of Seitah Formation rocks inferred by PIXL X-ray fluorescence, X-ray diffraction, and multispectral imaging on Mars. Sci. Adv. 8, eabp9084 (2022).
Vaniman, D. T. et al. Gypsum, bassanite, and anhydrite at Gale Crater, Mars. Am. Mineral. 103, 1011–1020 (2018).
Hardie, L. A. Gypsum-anhydrite equilibrium at one atmosphere pressure. Am. Mineral. 52, 171–17 (1967).
Babechuk, M. G., Widdowson, M. & Kamber, B. S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol. 363, 56–75 (2014).
Burns, R. G. & Fisher, D. S. Iron–sulfur mineralogy of Mars—magmatic evolution and chemical-weathering products. J. Geophys. Res. Solid Earth 95, 14415–14421 (1990).
Henneke, J. et al. A radiometric correction method and performance characteristics for PIXL’s multispectral analysis using LEDs. Space Sci. Rev. https://doi.org/10.1007/s11214-023-01014-5 (2023).
Rampe, E. B., Morris, R. V., Archer, P. D., Agresti, D. G. & Ming, D. W. Recognizing sulfate and phosphate complexes chemisorbed onto nanophase weathering products on Mars using in-situ and remote observations. Am. Mineral. 101, 678–689 (2016).
Roncal-Herrero, T., RodrÃguez-Blanco, J. D., Benning, L. G. & Oelkers, E. H. Precipitation of iron and aluminum phosphates directly from aqueous solution as a function of temperature from 50 to 200 °C. Crys. Growth Des. 9, 5197–5205 (2009).
Nriagu, J. & Dell, C. Diagenetic formation of iron phosphates in recent lake sediments. Am. Mineral. 59, 934–946 (1974).
Treiman, A. H. et al. Manganese–iron phosphate nodules at the Groken Site, Gale Crater, Mars. Minerals https://doi.org/10.3390/min13091122 (2023).
Hausrath, E. M. et al. Phosphates on Mars and their importance as igneous, aqueous, and astrobiological indicators. Minerals https://doi.org/10.3390/min14060591 (2024).
Kizovski, T. et al. Fe-phosphates in Jezero Crater as evidence for an ancient habitable environment on Mars. Nat. Commun. 16, 6470 (2025).
Miller, W. P., Zelazny, L. W. & Martens, D. C. Dissolution of synthetic crystalline and noncrystalline iron oxides by organic acids. Geoderma 37, 1–13 (1986).
Torres, R., Blesa, M. A. & Matijević, E. Interactions of metal hydrous oxides with chelating agents: IX. Reductive dissolution of hermatite and magnetite by aminocarboxylic acids. J. Colloid Interface Sci. 134, 475–485 (1990).
Ionescu, D., Heim, C., Polerecky, L., Thiel, V. & De Beer, D. Biotic and abiotic oxidation and reduction of iron at circumneutral pH are inseparable processes under natural conditions. Geomicrobiol. J. 32, 221–230 (2015).
Eigenbrode, J. L. et al. Organic matter preserved in 3-billion-year-old mudstones at Gale Crater, Mars. Science 360, 1096–1101 (2018).
Steele, A. et al. Organic synthesis associated with serpentinization and carbonation on early Mars. Science 375, 172–177 (2022).
Flynn, G. J., Nittler, L. R. & Engrand, C. Composition of cosmic dust: sources and implications for the early Solar System. Elements 12, 177–183 (2016).
Rimstidt, J. D. & Vaughan, D. J. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim. Cosmochim. Acta 67, 873–880 (2003).
Afonso, M. D. & Stumm, W. Reductive dissolution of iron(III) (hydr)oxides by hydrogen-sulfide. Langmuir 8, 1671–1675 (1992).
Canfield, D. E., Raiswell, R. & Bottrell, S. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 292, 659–683 (1992).
Gaillard, F. & Scaillet, B. The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279, 34–43 (2009).
Machel, H. G. Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment. Geol. 140, 143–175 (2001).
Rickard, D. & Luther, G. W. Chemistry of iron sulfides. Chem. Rev. 107, 514–562 (2007).
McSween, H. Y. Jr., Labotka, T. C. & Viviano-Beck, C. E. Metamorphism in the Martian crust. Meteorit. Planet. Sci. 50, 590–603 (2015).
Cosmidis, J. et al. Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France). Geochim. Cosmochim. Acta 126, 78–96 (2014).
Vuillemin, A. et al. Vivianite formation in ferruginous sediments from Lake Towuti, Indonesia. Biogeosciences 17, 1955–1973 (2020).
Hsu, T. W., Jiang, W. T. & Wang, Y. S. Authigenesis of vivianite as influenced by methane-induced sulfidization in cold-seep sediments off southwestern Taiwan. J. Asian Earth Sci. 89, 88–97 (2014).
Liu, J. R. et al. Vivianite formation in methane-rich deep-sea sediments from the South China Sea. Biogeosciences 15, 6329–6348 (2018).
Rickard, D., Roberts, A. P. & Navrotsky, A. Sedimentary greigite formation. Am. J. Sci. https://doi.org/10.2475/001c.121855 (2024).
Picard, A., Gartman, A., Clarke, D. R. & Girguis, P. R. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochim. Cosmochim. Acta 220, 367–384 (2018).
Xu, Z. Y. et al. Sulfidation-reoxidation enhances heavy metal immobilization by vivianite. Water Res. 263, 122195 (2024).
Craddock, P. R. & Dauphas, N. Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth Planet. Sci. Lett. 303, 121–132 (2011).
Marin-Carbonne, J. et al. In situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): evidence for early microbial iron reduction. Geobiology 18, 306–325 (2020).
Banfield, J. F., Moreau, J. W., Chan, C. S., Welch, S. A. & Little, B. Mineralogical biosignatures and the search for life on Mars. Astrobiology 1, 447–465 (2001).
Thomson, J., Higgs, N. C. & Colley, S. A geochemical investigation of reduction haloes developed under turbidites in brown clay. Mar. Geol. 89, 315–330 (1989).
Spinks, S. C., Parnell, J. & Bowden, S. A. Reduction spots in the Mesoproterozoic age: implications for life in the early terrestrial record. Int. J. Astrobiol. 9, 209–216 (2010).
Kawahara, H. et al. Bleached-spot formation in Fe-oxide-rich rock by inorganic process. Chem. Geol. 609, 121049 (2022).
Des Marais, D. J. et al. The NASA astrobiology roadmap. Astrobiology 3, 219–235 (2003).
Gillen, C., Jeancolas, C., McMahon, S. & Vickers, P. The call for a new definition of biosignature. Astrobiology 23, 1228–1237 (2023).
Mustard, J. F. et al. Report of the Mars 2020 Science Definition Team (Mars Exploration Program Analysis Group, 2013).
Hamran, S.-E. et al. Radar Imager for Mars’ Subsurface Experiment—RIMFAX. Space Sci. Rev. 216, 128 (2020).
Allwood, A. C. et al. PIXL: Planetary Instrument for X-ray Lithochemistry. Space Sci. Rev. 216, 134 (2020).
Maurice, S. et al. The SuperCam instrument suite on the Mars 2020 rover: science objectives and mast-unit description. Space Sci. Rev. 217, 47 (2021).
Wiens, R. C. et al. The SuperCam instrument suite on the NASA Mars 2020 rover: body unit and combined system tests. Space Sci. Rev. 217, 4 (2021).
Bell, J. F. et al. The Mars 2020 Perseverance rover Mast Camera Zoom (Mastcam-Z) multispectral, stereoscopic imaging investigation. Space Sci. Rev. 217, 24 (2021).
Moeller, R. C. et al. The Sampling and Caching Subsystem (SCS) for the scientific exploration of Jezero Crater by the Mars 2020 Perseverance rover. Space Sci. Rev. 217, 5 (2020).
Sharma, S. et al. Diverse organic-mineral associations in Jezero Crater, Mars. Nature 619, 724–72 (2023).
Osterhout, J. T., Schopf, J. W., Kudryavtsev, A. B., Czaja, A. D. & Williford, K. H. Deep-UV Raman spectroscopy of carbonaceous Precambrian microfossils: insights into the search for past life on Mars. Astrobiology 22, 1239–1254 (2022).
Jakubek, R. S. et al. Spectral Background Calibration of Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) spectrometer onboard the rover enables identification of a ubiquitous Martian spectral component. Appl. Spectrosc. https://doi.org/10.1177/00037028241280081 (2024).
Heirwegh, C. M., Elam, W. T., O’Neil, L. P., Sinclair, K. P. & Das, A. The focused beam X-ray fluorescence elemental quantification software package PIQUANT. Spectrochim. Acta Part B 196, 106520 (2022).
Schmidt, M. E. et al. Diverse and highly differentiated lava suite in Jezero Crater, Mars: constraints on intracrustal magmatism revealed by Mars 2020 PIXL. Sci. Adv. 11, eadr2613 (2025).
Chadwick, O. A., Brimhall, G. H. & Hendricks, D. M. From a black to a gray box—a mass balance interpretation of pedogenesis. Geomorphology 3, 369–390 (1990).
Liu, Y. et al. An olivine cumulate outcrop on the floor of Jezero Crater, Mars. Science 377, 1513–151 (2022).
Fisher, R. A. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10, 507–521 (1914).
Wright, A. P., Nemere, P., Galvin, A., Chau, D. H. & Davidoff, S. Lessons from the development of an anomaly detection interface on the Mars Perseverance Rover using the ISHMAP framework. In Proc. 28th International Conference on Intelligent User Interfaces 91–105 (Association for Computing Machinery, 2023).
Schurman, D. et al. PIXELATE: novel visualization and computational methods for the analysis of astrobiological spectroscopy data. In AbSciCon 2019, 401-8 (American Geophysical Union, 2019).
Davidoff, S. et al. PIXLISE spectroscopy analysis software: released versions for published analyses. OSF https://doi.org/10.17605/OSF.IO/URE2F (2024).