U.S. Fire Administration. What Is the Wui? 2022. Available from: https://www.usfa.fema.gov/wui/what-is-the-wui/

Kenneth WF, Judith E, John S, Deborah LS, Joachim DP, Matthew AS, Matthew AS, Charles M, Gavin PH, James D. Systemic exposure to Pahs and benzene in firefighters suppressing controlled structure fires. Ann Occup Hyg. 2014. https://doi.org/10.1093/annhyg/meu036.

Article 

Google Scholar
 

Christiane H-J, Stephanie CG, John G, Darin DW, Paul KM, Shawn CB, Leanne MF, Jing Z, Jing Z, Jing Z, Jin Z, Sally RL, Devi D-M, Alesia MJ, Fernanda G, Shane AS, Jefferey LB. Evaluation of fireground exposures using urinary Pah metabolites. J Exposure Sci Environ Epidemiol. 2021. https://doi.org/10.1038/s41370-021-00311-x.

Article 

Google Scholar
 

Mitchell CL, Hollister J, Fisher JM, Beitel SC, Ramadan F, O’Leary S, Fan ZT, Lutrick K, Burgess JL, Ellingson KD. Differences in serum concentrations of Per-and polyfluoroalkyl substances by occupation among Firefighters, other first Responders, healthcare workers, and other essential workers in Arizona, 2020–2023. J Expo Sci Environ Epidemiol. 2025. https://doi.org/10.1038/s41370-025-00753-7.

Article 

Google Scholar
 

Demers PA, DeMarini DM, Fent KW, Glass DC, Hansen J, Adetona O, Andersen MHG, Freeman LEB, Caban-Martinez AJ, Daniels RD, Driscoll TR, Goodrich JM, Graber JM, Kirkham TL, Kjaerheim K, Kriebel D, Long AS, Main LC, Oliveira M, Peters S, Teras LR, Watkins ER, Burgess JL, Stec AA, White PA, DeBono NL, Benbrahim-Tallaa L, de Conti A, El Ghissassi F, Grosse Y, Stayner LT, Suonio E, Viegas S, Wedekind R, Boucheron P, Hosseini B, Kim J, Zahed H, Mattock H, Madia F, Schubauer-Berigan MK. Carcinogenicity of occupational exposure as a firefighter. Lancet Oncol. 2022;23(8):985–6. https://doi.org/10.1016/S1470-2045(22)00390-4.

Article 

Google Scholar
 

Adetona O, Zhang J, Hall DB, Wang J-S, Vena JE, Naeher LP. Occupational exposure to woodsmoke and oxidative stress in wildland firefighters. Sci Total Environ. 2013;449:269–75. https://doi.org/10.1016/j.scitotenv.2013.01.075.

Article 
CAS 

Google Scholar
 

Denise MG, Chris P, Bean TC, Brandon FL, Virji MA, Nicole E, Paul LE, Diane S-B, Stephen SL, Gregory RW, Lester K, Stefanos NK, Michael H, David CC, Paul DS, Jean MC-G, Mark DH. Exposures and Cross-Shift lung function declines in wildland firefighters. J Occup Environ Hyg. 2014. https://doi.org/10.1080/15459624.2014.895372.

Article 

Google Scholar
 

Anna MH, Olorunfemi A, David D-S, Jacqueline DC, Adwoa C, Stephen LR, Luke PN. Inflammatory effects of woodsmoke exposure among wildland firefighters working at prescribed burns at the Savannah river Site, Sc. J Occup Environ Hyg. 2013. https://doi.org/10.1080/15459624.2012.760064.

Article 

Google Scholar
 

Ferguson MD, Semmens EO, Dumke C, Quindry JC, Ward TJ. Measured pulmonary and systemic markers of inflammation and oxidative stress following wildland firefighter simulations. J Occup Environ Med. 2016;58(4):407–13. https://doi.org/10.1097/jom.0000000000000688.

Article 
CAS 

Google Scholar
 

Swiston JR, John RS, Davidson W, Attridge S, Li GT, Michael B, Eeden SFV. Wood smoke exposure induces a pulmonary and systemic inflammatory response in firefighters. Eur Respir J. 2008. https://doi.org/10.1183/09031936.00097707.

Article 

Google Scholar
 

Kathleen MN, Michael TK, Chris EM, Timothy ER, John RB, George B, Roger DO, Luke PN, Joseph WD. Wildland firefighter smoke exposure and risk of lung cancer and cardiovascular disease mortality. Environ Res. 2019. https://doi.org/10.1016/j.envres.2019.03.060.

Article 

Google Scholar
 

Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS, Pujari VB. Inflammation and cancer. Ann Afr Med. 2019;18(3):p121-126 . https://doi.org/10.4103/aam.aam_56_18

Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative Stress, Inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–16. PubMed PMID: 20840865; PMCID: PMC2990475.

Article 
CAS 

Google Scholar
 

Fent KW, Evans DE, Babik K, Striley C, Bertke S, Kerber S, Smith D, Horn GP. Airborne contaminants during controlled residential fires. J Occup Environ Hyg. 2018;15(5):399–412. https://doi.org/10.1080/15459624.2018.1445260.

Article 
CAS 

Google Scholar
 

Fent KW, LaGuardia M, Luellen D, McCormick S, Mayer A, Chen IC, Kerber S, Smith D, Horn GP. Flame Retardants, Dioxins, and furans in air and on firefighters’ protective ensembles during controlled residential firefighting. Environ Int. 2020;140:105756. https://doi.org/10.1016/j.envint.2020.105756.

Article 
CAS 

Google Scholar
 

Keir JLA, Akhtar US, Matschke DMJ, White PA, Kirkham TL, Chan HM, Blais JM. Polycyclic aromatic hydrocarbon (Pah) and metal contamination of air and surfaces exposed to combustion emissions during emergency fire suppression: implications for firefighters’ exposures. Sci Total Environ. 2020;698:134211. https://doi.org/10.1016/j.scitotenv.2019.134211.

Article 
CAS 

Google Scholar
 

Amara LH, Aiesha A, Jeffrey MV, Venkatesh R. Hazardous air pollutant emissions estimates from wildfires in the wildland urban interface. PNAS Nexus. 2023. https://doi.org/10.1093/pnasnexus/pgad186.

Article 

Google Scholar
 

Qiu M, Chen D, Kelp M, Li J, Huang G, Yazdi MD. The rising threats of Wildland-Urban interface fires in the era of climate change: the Los Angeles 2025 fires. Innov. 2025;6(5):100835. https://doi.org/10.1016/j.xinn.2025.100835.

Article 

Google Scholar
 

Kolena B, Petrovičová I, Šidlovská M, Hlisníková H, Bystričanová L, Wimmerová S, Trnovec T. Occupational hazards and risks associated with phthalates among Slovakian firefighters. Int J Environ Res Public Health. 2020;17(7):2483. https://doi.org/10.3390/ijerph17072483.

Daniels RD, Bertke S, Dahm MM, Yiin JH, Kubale TL, Hales TR, Baris D, Zahm SH, Beaumont JJ, Waters KM, Pinkerton LE. Exposure–Response relationships for select cancer and Non-Cancer health outcomes in a cohort of Us firefighters from San Francisco, Chicago and Philadelphia (1950–2009). Occup Environ Med. 2015;72(10):699. https://doi.org/10.1136/oemed-2014-102671.

Article 

Google Scholar
 

Dongmug K, Letitia D, Phillip RH, David K. Cancer incidence among male Massachusetts Firefighters, 1987–2003. Am J Ind Med. 2008. https://doi.org/10.1002/ajim.20549.

Article 

Google Scholar
 

Lee DJ, Koru-Sengul T, Hernandez MN, Caban-Martinez AJ, McClure LA, Mackinnon JA, Kobetz EN. Cancer risk among career male and female Florida firefighters: evidence from the Florida firefighter cancer registry (1981–2014). Am J Ind Med. 2020;63(4):285–99. https://doi.org/10.1002/ajim.23086.

Article 

Google Scholar
 

Crawford JO, Graveling RA. Non-Cancer occupational health risks in firefighters. Occup Med. 2012;62(7):485–95. https://doi.org/10.1093/occmed/kqs116.

Article 
CAS 

Google Scholar
 

Goodrich JM, Furlong MA, Urwin DJ, Gabriel J, Hughes J, Jung AM, Calkins MM, Dubose KN, Caban-Martinez AJ, Solle NS, Beitel SC, Burgess JL. Epigenetic modifications associated with Wildland–Urban interface (Wui) firefighting. Environ Mol Mutagen. 2025. https://doi.org/10.1002/em.70002.

Article 

Google Scholar
 

Burgess J, Shawn CB, Miriam MC, Melissa AF, Paola Louzado F, Jamie Kolar G, Grant C, Jaclyn MG, Judith MG, Olivia H, James H, Jeff H, Sara AJ, Krystal JK, Frank AL, Caban-Martinez A, Alexander CM, Russell O, Cynthia P, Sreenivasan R, Heather MS, Solle NS, Christine T, Derek JU, Michelle V, Gulotta J. The fire fighter cancer cohort study: protocol for a longitudinal occupational cohort study of united States firefighters (Preprint). JMIR Res Protocols. 2024. https://doi.org/10.2196/70522.

Article 

Google Scholar
 

Pedrioli PGA, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R. A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol. 2004;22(11):1459–66. https://doi.org/10.1038/nbt1031.

Article 
CAS 

Google Scholar
 

Yu T, Park Y, Johnson JM, Jones DP. Bioinformatics. 2009;25(15):1930–6. https://doi.org/10.1093/bioinformatics/btp291. Aplcms—Adaptive Processing of High-Resolution Lc/Ms Data.

Uppal K, Ma C, Go YM, Jones DP, Xmwas. Bioinf (Oxford England). 2018;34(4):701–2. https://doi.org/10.1093/BIOINFORMATICS/BTX656. : A Data-Driven Integration and Differential Network Analysis Tool.

Luan H, Ji F, Chen Y, Cai Z, Stattarget. Anal Chim Acta. 2018;1036:66–72. https://doi.org/10.1016/j.aca.2018.08.002. A Streamlined Tool for Signal Drift Correction and Interpretations of Quantitative Mass Spectrometry-Based Omics Data.

Liu T, Furlong MA, Snider JM, Tfaily MM, Itson C, Beitel SC, Gulotta JJ, Parsawar K, Keck K, Galligan J, Walker DI, Goodrich JM, Burgess JL. Differential metabolic profiles by Hispanic ethnicity among male Tucson firefighters. Metabolomics. 2025;21(2):37. https://doi.org/10.1007/s11306-024-02198-9.

Article 
CAS 

Google Scholar
 

Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48(4):2097–8. https://doi.org/10.1021/es5002105.

Article 
CAS 

Google Scholar
 

Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3(3):211–21. https://doi.org/10.1007/s11306-007-0082-2.

Article 
CAS 

Google Scholar
 

Armitage EG, Godzien J, Alonso-Herranz V, López-Gonzálvez Á, Barbas C. Missing value imputation strategies for metabolomics data. Electrophoresis. 2015;36(24):3050–60. https://doi.org/10.1002/elps.201500352.

Article 
CAS 

Google Scholar
 

Stekhoven DJ, Bühlmann P. Missforest—Non-Parametric missing value imputation for Mixed-Type data. Bioinformatics. 2012;28(1):112–8. https://doi.org/10.1093/bioinformatics/btr597.

Article 
CAS 

Google Scholar
 

Wei R, Wang J, Su M, Jia E, Chen S, Chen T, Ni Y. Sci Rep. 2018;8(1). Missing Value Imputation Approach for Mass Spectrometry-Based Metabolomics Data. https://doi.org/10.1038/s41598-017-19120-0.

Candel MJJM, Van Breukelen GJP, Kotova L, Berger MPF. Optimality of equal Vs. Unequal cluster sizes in multilevel intervention studies: A Monte Carlo study for small sample sizes. Commun Stat – Simul Comput. 2007;37(1):222–39. https://doi.org/10.1080/03610910701724052.

Article 

Google Scholar
 

Furlong MA, Liu T, Snider JM, Tfaily MM, Itson C, Beitel S, Parsawar K, Keck K, Galligan J, Walker DI, Gulotta JJ, Burgess JL. Evaluating changes in firefighter urinary metabolomes after structural fires: an Untargeted, high resolution approach. Sci Rep. 2023;13(1):20872. https://doi.org/10.1038/s41598-023-47799-x.

Article 
CAS 

Google Scholar
 

Goodrich JM, Furlong MA, Caban-Martinez AJ, Jung AM, Batai K, Jenkins T, Beitel S, Littau S, Gulotta J, Wallentine D, Hughes J, Popp C, Calkins MM, Burgess JL. Differential DNA methylation by Hispanic ethnicity among firefighters in the united States. Epigenetics Insights. 2021;14:251686572110061. https://doi.org/10.1177/25168657211006159.

Article 

Google Scholar
 

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna; Austria. 2023. https://www.R-project.org/

Pang Z, Lu Y, Zhou G, Hui F, Xu L, Viau C, Spigelman Aliya F, MacDonald Patrick E, Wishart David S, Li S, Xia J. Metaboanalyst 6.0: towards a unified platform for metabolomics data Processing, analysis and interpretation. Nucleic Acids Res. 2024;gkae253. https://doi.org/10.1093/nar/gkae253.

Kanehisa M, Kegg. Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.

Article 
CAS 

Google Scholar
 

Levasseur JL, Hoffman K, Herkert NJ, Cooper E, Hay D, Stapleton HM. Characterizing firefighter’s exposure to over 130 Svocs using silicone wristbands: A pilot study comparing on-Duty and Off-Duty exposures. Sci Total Environ. 2022;834:155237. https://doi.org/10.1016/j.scitotenv.2022.155237.

Article 
CAS 

Google Scholar
 

Smith DL, DeBlois JP, Kales SN, Horn GP. Cardiovascular strain of firefighting and the risk of sudden cardiac events. Exerc Sport Sci Rev. 2016;44(3).

Daskalaki E, Blackburn G, Kalna G, Zhang T, Anthony N, Watson D. A study of the effects of exercise on the urinary metabolome using normalisation to individual metabolic output. Metabolites. 2015;5(1):119–39. https://doi.org/10.3390/metabo5010119.

Article 
CAS 

Google Scholar
 

Enea C, Seguin F, Petitpas-Mulliez J, Boildieu N, Boisseau N, Delpech N, Diaz V, Eugène M, Dugué B. 1 h Nmr-Based metabolomics approach for exploring urinary metabolome modifications after acute and chronic physical exercise. Anal Bioanal Chem. 2010;396(3):1167–76. https://doi.org/10.1007/s00216-009-3289-4.

Article 
CAS 

Google Scholar
 

Li Z, Wang Y, Sun H. The role of Branched-Chain amino acids and their metabolism in cardiovascular diseases. J Cardiovasc Transl Res. 2024;17(1):85–90. https://doi.org/10.1007/s12265-024-10479-w.

Article 

Google Scholar
 

Bloemendaal M, Froböse MI, Wegman J, Van De Zandbelt BB, Cools R, Aarts E. Neuro-Cognitive Effects of Acute Tyrosine Administration on Reactive and Proactive Response Inhibition in Healthy Older Adults. eneuro. 2018;5(2):ENEURO.0035 – 17. https://doi.org/10.1523/eneuro.0035-17.2018

Lai H-S, Lee J-C, Lee P-H, Wang S-T, Chen W-J. Plasma free amino acid profile in cancer patients. Sem Cancer Biol. 2005;15(4):267–76. https://doi.org/10.1016/j.semcancer.2005.04.003.

Article 
CAS 

Google Scholar
 

Wiggins T, Kumar S, Markar SR, Antonowicz S, Hanna GB. Tyrosine, Phenylalanine, and Tryptophan in gastroesophageal malignancy: A systematic review. Cancer Epidemiol Biomarkers Prev. 2015;24(1):32–8. https://doi.org/10.1158/1055-9965.epi-14-0980.

Article 
CAS 

Google Scholar
 

Bala CG, Rusu A, Ciobanu D, Bucsa C, Roman G. Amino acid signature of oxidative stress in patients with type 2 diabetes: targeted exploratory metabolomic research. Antioxidants. 2021;10(4):610. https://doi.org/10.3390/antiox10040610.

Article 
CAS 

Google Scholar
 

Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G. Serine and Glycine metabolism in cancer. Trends Biochem Sci. 2014;39(4):191–8. https://doi.org/10.1016/j.tibs.2014.02.004. Epub 20140320.

Article 
CAS 

Google Scholar
 

He L, Ding Y, Zhou X, Li T, Yin Y. Serine signaling governs metabolic homeostasis and health. Trends Endocrinol Metabolism. 2023;34(6):361–72. https://doi.org/10.1016/j.tem.2023.03.001.

Article 
CAS 

Google Scholar
 

Sullivan MR, Mattaini KR, Dennstedt EA, Nguyen AA, Sivanand S, Reilly MF, Meeth K, Muir A, Darnell AM, Bosenberg MW, Lewis CA, Vander Heiden MG. Increased Serine synthesis provides an advantage for tumors arising in tissues where Serine levels are limiting. Cell Metabol. 2019;29(6):1410–e214. https://doi.org/10.1016/j.cmet.2019.02.015.

Article 
CAS 

Google Scholar
 

Baković J, López Martínez D, Nikolaou S, Yu BYK, Tossounian M-A, Tsuchiya Y, Thrasivoulou C, Filonenko V, Gout I. Regulation of the coa biosynthetic complex assembly in mammalian cells. Int J Mol Sci. 2021;22(3):1131. https://doi.org/10.3390/ijms22031131.

Article 
CAS 

Google Scholar
 

Pallotti F, Bergamini C, Lamperti C, Fato R. The roles of coenzyme Q in disease: direct and indirect involvement in cellular functions. Int J Mol Sci. 2021;23(1):128. https://doi.org/10.3390/ijms23010128.

Article 
CAS 

Google Scholar
 

Stefely JA, Pagliarini DJ. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem Sci. 2017;42(10):824–43. https://doi.org/10.1016/j.tibs.2017.06.008.

Article 
CAS 

Google Scholar
 

Kawamukai M. Biosynthesis and bioproduction of coenzyme Q10 by yeasts and other organisms. Biotechnol Appl Chem. 2009;53(4):217–26. https://doi.org/10.1042/BA20090035.

Article 
CAS 

Google Scholar
 

Bentinger M, Tekle M, Dallner G. Coenzyme Q – Biosynthesis and functions. Biochem Biophys Res Commun. 2010;396(1):74–9. https://doi.org/10.1016/j.bbrc.2010.02.147.

Article 
CAS 

Google Scholar
 

Kühn S, Düzel S, Colzato L, Norman K, Gallinat J, Brandmaier AM, Lindenberger U, Widaman KF. Food for thought: association between dietary tyrosine and cognitive performance in younger and older adults. Psychol Res. 2019;83(6):1097–106. https://doi.org/10.1007/s00426-017-0957-4.

Article 

Google Scholar
 

Budhu A, Terunuma A, Zhang G, Hussain SP, Ambs S, Wang XW. Metabolic profiles are principally different between cancers of the Liver, pancreas and breast. Int J Biol Sci. 2014;10(9):966–72. https://doi.org/10.7150/ijbs.9810.

Article 
CAS 

Google Scholar
 

Chandel NS. Nucleotide metabolism. Cold Spring Harb Perspect Biol. 2021;13(7):a040592. https://doi.org/10.1101/cshperspect.a040592.

Article 
CAS 

Google Scholar
 

Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y. Arginine metabolism and nutrition in Growth, health and disease. Amino Acids. 2009;37(1):153–68. https://doi.org/10.1007/s00726-008-0210-y.

Article 
CAS 

Google Scholar
 

Ling Z-N, Jiang Y-F, Ru J-N, Lu J-H, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther. 2023;8(1). https://doi.org/10.1038/s41392-023-01569-3.

Pal MM, Glutamate. The master neurotransmitter and its implications in chronic stress and mood disorders. Front Hum Neurosci. 2021;15. https://doi.org/10.3389/fnhum.2021.722323.

National Center for Biotechnology Information. Pubchem Compound Summary for Cid 5950. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Alanine

Matthews DE. An overview of phenylalanine and tyrosine kinetics in Humans123. J Nutr. 2007;137(6):S1549–55. https://doi.org/10.1093/jn/137.6.1549S.

Article 

Google Scholar
 

Xue C, Li G, Zheng Q, Gu X, Shi Q, Su Y, Chu Q, Yuan X, Bao Z, Lu J, Li L. Tryptophan metabolism in health and disease. Cell Metabol. 2023;35(8):1304–26. https://doi.org/10.1016/j.cmet.2023.06.004.

Article 
CAS 

Google Scholar
 

Liang D, Li Z, Vlaanderen J, Tang Z, Jones DP, Vermeulen R, Sarnat JA. A State-of-the-Science review on High-Resolution metabolomics application in air pollution health research: current Progress, analytical Challenges, and recommendations for future direction. Environ Health Perspect. 2023;131(5). https://doi.org/10.1289/ehp11851.

Rothman N, Correa-Villaseñor A, Ford DP, Poirier MC, Haas R, Hansen JA, O’Toole T, Strickland PT. Contribution of occupation and diet to white blood cell polycyclic aromatic Hydrocarbon-DNA adducts in wildland firefighters. Cancer Epidemiol Biomarkers Prev. 1993;2(4):341–7.

CAS 

Google Scholar
 

Paiva AM, Barros B, Oliveira M, Alves S, Esteves F, Fernandes A, Vaz J, Slezáková K, Teixeira JP, Costa S, Morais S. Biomonitoring of polycyclic aromatic hydrocarbons exposure and Short-Time health effects in wildland firefighters during Real-Life fire events. Sci Total Environ. 2024;926:171801. https://doi.org/10.1016/j.scitotenv.2024.171801.

Article 
CAS 

Google Scholar