Lipton RB, Silberstein SD (2015) Episodic and chronic migraine headache: breaking down barriers to optimal treatment and prevention. Headache 55(Suppl 2):103–122 quiz 23–6. https://doi.org/10.1111/head.12505_2.

Article 
PubMed 

Google Scholar
 

Robbins MS (2021) Diagnosis and management of headache: A review. JAMA 325(18):1874–1885. https://doi.org/10.1001/jama.2021.1640.

Article 
PubMed 

Google Scholar
 

Rossi MF, Tumminello A, Marconi M, Gualano MR, Santoro PE, Malorni W et al (2022) Sex and gender differences in migraines: a narrative review. Neurol Sci 43(9):5729–5734. https://doi.org/10.1007/s10072-022-06178-6.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Burch RC, Buse DC, Lipton RB, Migraine (2019) Epidemiology, Burden, and comorbidity. Neurol Clin 37(4):631–649. https://doi.org/10.1016/j.ncl.2019.06.001.

Article 
PubMed 

Google Scholar
 

Smitherman TA, Burch R, Sheikh H, Loder E (2013) The prevalence, impact, and treatment of migraine and severe headaches in the united states: a review of statistics from National surveillance studies. Headache 53(3):427–436. https://doi.org/10.1111/head.12074.

Article 
PubMed 

Google Scholar
 

Bigal ME, Lipton RB (2008) Concepts and mechanisms of migraine chronification. Headache 48(1):7–15. https://doi.org/10.1111/j.1526-4610.2007.00969.x.

Article 
PubMed 

Google Scholar
 

Bigal ME, Serrano D, Buse D, Scher A, Stewart WF, Lipton RB (2008) Acute migraine medications and evolution from episodic to chronic migraine: a longitudinal population-based study. Headache 48(8):1157–1168. https://doi.org/10.1111/j.1526-4610.2008.01217.x.

Article 
PubMed 

Google Scholar
 

Petrini L, Arendt-Nielsen L (2020) Understanding pain catastrophizing: putting pieces together. Front Psychol 11:603420. https://doi.org/10.3389/fpsyg.2020.603420.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Seminowicz DA, Shpaner M, Keaser ML, Krauthamer GM, Mantegna J, Dumas JA et al (2013) Cognitive-behavioral therapy increases prefrontal cortex Gray matter in patients with chronic pain. J Pain 14(12):1573–1584. https://doi.org/10.1016/j.jpain.2013.07.020.

Article 
PubMed 

Google Scholar
 

May A (2008) Chronic pain May change the structure of the brain. Pain 137(1):7–15. https://doi.org/10.1016/j.pain.2008.02.034.

Article 
PubMed 

Google Scholar
 

Coppola G, Di Lorenzo C, Schoenen J, Pierelli F (2013) Habituation and sensitization in primary headaches. J Headache Pain 14(1):65. https://doi.org/10.1186/1129-2377-14-65.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Coppola G, Schoenen J (2012) Cortical excitability in chronic migraine. Curr Pain Headache Rep 16(1):93–100. https://doi.org/10.1007/s11916-011-0231-1.

Article 
PubMed 

Google Scholar
 

Mutso AA, Petre B, Huang L, Baliki MN, Torbey S, Herrmann KM et al (2014) Reorganization of hippocampal functional connectivity with transition to chronic back pain. J Neurophysiol 111(5):1065–1076. https://doi.org/10.1152/jn.00611.2013.

Article 
PubMed 

Google Scholar
 

Vachon-Presseau E, Centeno MV, Ren W, Berger SE, Tetreault P, Ghantous M et al (2016) The emotional brain as a predictor and amplifier of chronic pain. J Dent Res 95(6):605–612. https://doi.org/10.1177/0022034516638027.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Neugebauer V, Li W, Bird GC, Han JS (2004) The amygdala and persistent pain. Neuroscientist 10(3):221–234. https://doi.org/10.1177/1073858403261077.

Article 
PubMed 

Google Scholar
 

Thompson JM, Neugebauer V (2017) Amygdala plasticity and pain. Pain Res Manag 2017:8296501. https://doi.org/10.1155/2017/8296501.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474. https://doi.org/10.1016/s0301-0082(02)00009-6.

Article 
CAS 
PubMed 

Google Scholar
 

Espana JC, Yasoda-Mohan A, Vanneste S The locus coeruleus in chronic pain. Int J Mol Sci. 2024;25(16). https://doi.org/10.3390/ijms25168636.

Chattopadhyaya B, Cristo GD (2012) GABAergic circuit dysfunctions in neurodevelopmental disorders. Front Psychiatry 3:51. https://doi.org/10.3389/fpsyt.2012.00051.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ghosal S, Hare B, Duman RS (2017) Prefrontal cortex GABAergic deficits and circuit dysfunction in the pathophysiology and treatment of chronic stress and depression. Curr Opin Behav Sci 14:1–8. https://doi.org/10.1016/j.cobeha.2016.09.012.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fogaca MV, Duman RS (2019) Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci 13:87. https://doi.org/10.3389/fncel.2019.00087.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wu X, Han S, Yang Y, Dai H, Wu P, Zhao H et al (2022) Decreased brain GABA levels in patients with migraine without aura: an exploratory proton magnetic resonance spectroscopy study. Neuroscience 488:10–19. https://doi.org/10.1016/j.neuroscience.2022.02.010.

Article 
CAS 
PubMed 

Google Scholar
 

Ayata C (2010) Cortical spreading depression triggers migraine attack: pro. Headache 50(4):725–730. https://doi.org/10.1111/j.1526-4610.2010.01647.x.

Article 
PubMed 

Google Scholar
 

Burstein R, Noseda R, Borsook D (2015) Migraine: multiple processes, complex pathophysiology. J Neurosci 35(17):6619–6629. https://doi.org/10.1523/JNEUROSCI.0373-15.2015.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Aguila ME, Lagopoulos J, Leaver AM, Rebbeck T, Hubscher M, Brennan PC et al (2015) Elevated levels of GABA + in migraine detected using (1) H-MRS. NMR Biomed 28(7):890–897. https://doi.org/10.1002/nbm.3321.

Article 
CAS 
PubMed 

Google Scholar
 

Bridge H, Stagg CJ, Near J, Lau CI, Zisner A, Cader MZ (2015) Altered neurochemical coupling in the occipital cortex in migraine with visual aura. Cephalalgia 35(11):1025–1030. https://doi.org/10.1177/0333102414566860.

Article 
PubMed 

Google Scholar
 

Vieira DS, Naffah-Mazacoratti MG, Zukerman E, Senne Soares CA, Alonso EO, Faulhaber MH et al (2006) Cerebrospinal fluid GABA levels in chronic migraine with and without depression. Brain Res 1090(1):197–201. https://doi.org/10.1016/j.brainres.2006.03.051.

Article 
CAS 
PubMed 

Google Scholar
 

Epi KC, Epilepsy Phenome/Genome P, Allen AS, Berkovic SF, Cossette P, Delanty N et al (2013) De Novo mutations in epileptic encephalopathies. Nature 501(7466):217–221. https://doi.org/10.1038/nature12439.

Article 
CAS 

Google Scholar
 

Gormley P, Anttila V, Winsvold BS, Palta P, Esko T, Pers TH et al (2016) Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet 48(8):856–866. https://doi.org/10.1038/ng.3598.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Silberstein SD (2009) Preventive migraine treatment. Neurol Clin 27(2):429–443. https://doi.org/10.1016/j.ncl.2008.11.007.

Article 
PubMed 

Google Scholar
 

Tottene A, Conti R, Fabbro A, Vecchia D, Shapovalova M, Santello M et al (2009) Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron 61(5):762–773. https://doi.org/10.1016/j.neuron.2009.01.027.

Article 
CAS 
PubMed 

Google Scholar
 

Vecchia D, Tottene A, van den Maagdenberg AM, Pietrobon D (2014) Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice. Neurobiol Dis 69(100):225–234. https://doi.org/10.1016/j.nbd.2014.05.035.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cottam JC, Smith SL, Hausser M (2013) Target-specific effects of somatostatin-expressing interneurons on neocortical visual processing. J Neurosci 33(50):19567–19578. https://doi.org/10.1523/JNEUROSCI.2624-13.2013.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nikolova S, Schwedt TJ (2022) Magnetic resonance spectroscopy studies in migraine. Neurobiol Pain 12:100102. https://doi.org/10.1016/j.ynpai.2022.100102.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Paungarttner J, Quartana M, Patti L, Sklenarova B, Farham F, Jimenez IH et al (2024) Migraine – a borderland disease to epilepsy: near it but not of it. J Headache Pain 25(1):11. https://doi.org/10.1186/s10194-024-01719-0.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang X, Wang W, Bai X, Zhang Y, Yuan Z, Tang H et al (2023) Changes in gamma-aminobutyric acid and glutamate/glutamine levels in the right thalamus of patients with episodic and chronic migraine: A proton magnetic resonance spectroscopy study. Headache 63(1):104–113. https://doi.org/10.1111/head.14449.

Article 
CAS 
PubMed 

Google Scholar
 

Bigal ME, Hetherington H, Pan J, Tsang A, Grosberg B, Avdievich N et al (2008) Occipital levels of GABA are related to severe headaches in migraine. Neurology 70(22):2078–2080. https://doi.org/10.1212/01.wnl.0000313376.07248.28.

Article 
CAS 
PubMed 

Google Scholar
 

Storer RJ, Akerman S, Goadsby PJ (2001) GABA receptors modulate trigeminovascular nociceptive neurotransmission in the trigeminocervical complex. Br J Pharmacol 134(4):896–904. https://doi.org/10.1038/sj.bjp.0704325.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Iversen HK, Olesen J, Tfelt-Hansen P (1989) Intravenous nitroglycerin as an experimental model of vascular headache. Basic characteristics. Pain 38(1):17–24. https://doi.org/10.1016/0304-3959(89)90067-5.

Article 
CAS 
PubMed 

Google Scholar
 

Bates EA, Nikai T, Brennan KC, Fu YH, Charles AC, Basbaum AI et al (2010) Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia 30(2):170–178. https://doi.org/10.1111/j.1468-2982.2009.01864.x.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ben Aissa M, Tipton AF, Bertels Z, Gandhi R, Moye LS, Novack M et al (2018) Soluble Guanylyl cyclase is a critical regulator of migraine-associated pain. Cephalalgia 38(8):1471–1484. https://doi.org/10.1177/0333102417737778.

Article 
PubMed 

Google Scholar
 

Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ, Charles A (2014) Characterization of a novel model of chronic migraine. Pain 155(2):269–274. https://doi.org/10.1016/j.pain.2013.10.004.

Article 
CAS 
PubMed 

Google Scholar
 

Moye LS, Pradhan AAA Animal model of chronic migraine-associated pain. Curr Protoc Neurosci. 2017;80:9601–9699. https://doi.org/10.1002/cpns.33.

Lopez-Bendito G, Sturgess K, Erdelyi F, Szabo G, Molnar Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb Cortex 14(10):1122–1133. https://doi.org/10.1093/cercor/bhh072.

Article 
PubMed 

Google Scholar
 

Won C, Lin Z, Kumar TP, Li S, Ding L, Elkhal A et al (2013) Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat Commun 4:2149. https://doi.org/10.1038/ncomms3149.

Article 
CAS 
PubMed 

Google Scholar
 

Xia C, Dai W, Carreno J, Rogando A, Wu X, Simmons D et al (2024) Higher sodium in older individuals or after stroke/reperfusion, but not in migraine or alzheimer’s disease – a study in different preclinical models. Sci Rep 14(1):21636. https://doi.org/10.1038/s41598-024-72280-8.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.

Article 
CAS 
PubMed 

Google Scholar
 

Mudge JM, Harrow J (2015) Creating reference gene annotation for the mouse C57BL6/J genome assembly. Mamm Genome 26(9–10):366–378. https://doi.org/10.1007/s00335-015-9583-x.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Love MI, Huber W, Anders S (2014) Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Park JH, Kim TK, Kim HK, Baik SW (2009) Apoptosis of the GABAergic interneuron in the dorsal Horn of the chronic post-ischemic pain model. Korean J Anesthesiol 57(3):350–357. https://doi.org/10.4097/kjae.2009.57.3.350.

Article 
CAS 
PubMed 

Google Scholar
 

Meisner JG, Marsh AD, Marsh DR (2010) Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal Horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J Neurotrauma 27(4):729–737. https://doi.org/10.1089/neu.2009.1166.

Article 
PubMed 

Google Scholar
 

Yowtak J, Wang J, Kim HY, Lu Y, Chung K, Chung JM (2013) Effect of antioxidant treatment on spinal GABA neurons in a neuropathic pain model in the mouse. Pain 154(11):2469–2476. https://doi.org/10.1016/j.pain.2013.07.024.

Article 
CAS 
PubMed 

Google Scholar
 

Jones AF, Sheets PL (2020) Sex-Specific disruption of distinct mPFC inhibitory neurons in Spared-Nerve injury model of neuropathic pain. Cell Rep 31(10):107729. https://doi.org/10.1016/j.celrep.2020.107729.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dedek A, Xu J, Lorenzo LE, Godin AG, Kandegedara CM, Glavina G et al (2022) Sexual dimorphism in a neuronal mechanism of spinal hyperexcitability across rodent and human models of pathological pain. Brain 145(3):1124–1138. https://doi.org/10.1093/brain/awab408.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Herrera DG, Robertson HA (1996) Activation of c-fos in the brain. Prog Neurobiol 50(2–3):83–107. https://doi.org/10.1016/s0301-0082(96)00021-4.

Article 
CAS 
PubMed 

Google Scholar
 

Nestler EJ, Barrot M, Self DW (2001) DeltaFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci U S A 98(20):11042–11046. https://doi.org/10.1073/pnas.191352698.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Clasadonte J, Deprez T, Stephens GS, Mairet-Coello G, Cortin PY, Boutier M et al (2023) DeltaFosB is part of a homeostatic mechanism that protects the epileptic brain from further deterioration. Front Mol Neurosci 16:1324922. https://doi.org/10.3389/fnmol.2023.1324922.

Article 
CAS 
PubMed 

Google Scholar
 

Nestler EJ (2015) ∆FosB: a transcriptional regulator of stress and antidepressant responses. Eur J Pharmacol 753:66–72. https://doi.org/10.1016/j.ejphar.2014.10.034.

Article 
CAS 
PubMed 

Google Scholar
 

Pollema-Mays SL, Centeno MV, Chang Z, Apkarian AV, Martina M (2019) Reduced DeltaFosB expression in the rat nucleus accumbens has causal role in the neuropathic pain phenotype. Neurosci Lett 702:77–83. https://doi.org/10.1016/j.neulet.2018.11.036.

Article 
CAS 
PubMed 

Google Scholar
 

Wang H, Tao X, Huang ST, Wu L, Tang HL, Song Y et al (2016) Chronic stress is associated with pain precipitation and elevation in DeltaFosb expression. Front Pharmacol 7:138. https://doi.org/10.3389/fphar.2016.00138.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Neugebauer V (2015) Amygdala pain mechanisms. Handb Exp Pharmacol 227:261–284. https://doi.org/10.1007/978-3-662-46450-2_13.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61(3):283–357. https://doi.org/10.1124/pr.109.001370.

Article 
CAS 
PubMed 

Google Scholar
 

Jiang SZ, Zhang HY, Eiden LE (2023) PACAP controls endocrine and behavioral stress responses via separate brain circuits. Biol Psychiatry Glob Open Sci 3(4):673–685. https://doi.org/10.1016/j.bpsgos.2023.04.001.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hammack SE, May V (2015) Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 78(3):167–177. https://doi.org/10.1016/j.biopsych.2014.12.003.

Article 
CAS 
PubMed 

Google Scholar
 

Zhou CJ, Shioda S, Yada T, Inagaki N, Pleasure SJ, Kikuyama S (2002) PACAP and its receptors exert pleiotropic effects in the nervous system by activating multiple signaling pathways. Curr Protein Pept Sci 3(4):423–439. https://doi.org/10.2174/1389203023380576.

Article 
CAS 
PubMed 

Google Scholar
 

Winters SJ, Moore JP (2020) Jr. PACAP: A regulator of mammalian reproductive function. Mol Cell Endocrinol 518:110912. https://doi.org/10.1016/j.mce.2020.110912.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lehmann ML, Mustafa T, Eiden AM, Herkenham M, Eiden LE (2013) PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress. Psychoneuroendocrinology 38(5):702–715. https://doi.org/10.1016/j.psyneuen.2012.09.006.

Article 
CAS 
PubMed 

Google Scholar
 

Grafer CM, Halvorson LM (2013) Androgen receptor drives transcription of rat PACAP in gonadotrope cells. Mol Endocrinol 27(8):1343–1356. https://doi.org/10.1210/me.2012-1378.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hammack SE, Cheung J, Rhodes KM, Schutz KC, Falls WA, Braas KM et al (2009) Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology 34(6):833–843. https://doi.org/10.1016/j.psyneuen.2008.12.013.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Roman CW, Lezak KR, Hartsock MJ, Falls WA, Braas KM, Howard AB et al (2014) PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress. Psychoneuroendocrinology 47:151–165. https://doi.org/10.1016/j.psyneuen.2014.05.014.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bangasser DA, Wicks B (2017) Sex-specific mechanisms for responding to stress. J Neurosci Res 95(1–2):75–82. https://doi.org/10.1002/jnr.23812.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

King SB, Toufexis DJ, Hammack SE (2017) Pituitary adenylate cyclase activating polypeptide (PACAP), stress, and sex hormones. Stress 20(5):465–475. https://doi.org/10.1080/10253890.2017.1336535.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

MacAulay N, Keep RF, Zeuthen T (2022) Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited. Fluids Barriers CNS 19(1):26. https://doi.org/10.1186/s12987-022-00323-1.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Thompson D, Brissette CA, Watt JA (2022) The choroid plexus and its role in the pathogenesis of neurological infections. Fluids Barriers CNS 19(1):75. https://doi.org/10.1186/s12987-022-00372-6.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA (2023) The choroid plexus: a missing link in our Understanding of brain development and function. Physiol Rev 103(1):919–956. https://doi.org/10.1152/physrev.00060.2021.

Article 
CAS 
PubMed 

Google Scholar
 

Xiong J, Liu M, Li X, Chen Z (2025) Choroid plexus volume and association with migraine pathophysiology. Eur J Radiol 188:112135. https://doi.org/10.1016/j.ejrad.2025.112135.

Article 
PubMed 

Google Scholar
 

Charles AC, Baca SM (2013) Cortical spreading depression and migraine. Nat Rev Neurol 9(11):637–644. https://doi.org/10.1038/nrneurol.2013.192.

Article 
PubMed 

Google Scholar
 

Lee HJ, Lee DA, Park KM Choroid plexus enlargement in patients with chronic migraine: implications for glymphatic system dysfunction. Can J Neurol Sci. 2025;1–7. https://doi.org/10.1017/cjn.2025.21.

Tochitani S, Kondo S, Immunoreactivity for GABA (2013) GAD65, GAD67 and Bestrophin-1 in the meninges and the choroid plexus: implications for non-neuronal sources for GABA in the developing mouse brain. PLoS ONE 8(2):e56901. https://doi.org/10.1371/journal.pone.0056901.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ben-Ari Y (2002) Excitatory actions of Gaba during development: the nature of the nurture. Nat Rev Neurosci 3(9):728–739. https://doi.org/10.1038/nrn920.

Article 
CAS 
PubMed 

Google Scholar
 

Ganguly K, Schinder AF, Wong ST, Poo M (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to Inhibition. Cell 105(4):521–532. https://doi.org/10.1016/s0092-8674(01)00341-5.

Article 
CAS 
PubMed 

Google Scholar
 

Kaila K, Ruusuvuori E, Seja P, Voipio J, Puskarjov M (2014) GABA actions and ionic plasticity in epilepsy. Curr Opin Neurobiol 26:34–41. https://doi.org/10.1016/j.conb.2013.11.004.

Article 
CAS 
PubMed 

Google Scholar
 

Cherubini E, Di Cristo G, Avoli M (2021) Dysregulation of GABAergic signaling in neurodevelomental disorders: targeting Cation-Chloride Co-transporters to Re-establish a proper E/I balance. Front Cell Neurosci 15:813441. https://doi.org/10.3389/fncel.2021.813441.

Article 
CAS 
PubMed 

Google Scholar
 

Xu H, Fame RM, Sadegh C, Sutin J, Naranjo C, Della S et al (2021) Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat Commun 12(1):447. https://doi.org/10.1038/s41467-020-20666-3.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S, Alexander JK et al (2015) Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 18(8):1081–1083. https://doi.org/10.1038/nn.4053.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mapplebeck JCS, Dalgarno R, Tu Y, Moriarty O, Beggs S, Kwok CHT et al (2018) Microglial P2X4R-evoked pain hypersensitivity is sexually dimorphic in rats. Pain 159(9):1752–1763. https://doi.org/10.1097/j.pain.0000000000001265.

Article 
CAS 
PubMed 

Google Scholar
 

Dart AM, Du XJ, Kingwell BA (2002) Gender, sex hormones and autonomic nervous control of the cardiovascular system. Cardiovasc Res 53(3):678–687. https://doi.org/10.1016/s0008-6363(01)00508-9.

Article 
CAS 
PubMed 

Google Scholar
 

Simerly RB, Chang C, Muramatsu M, Swanson LW (1990) Distribution of androgen and Estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol 294(1):76–95. https://doi.org/10.1002/cne.902940107.

Article 
CAS 
PubMed 

Google Scholar
 

Guidetti D, Rota E, Morelli N, Immovilli P (2014) Migraine and stroke: vascular comorbidity. Front Neurol 5:193. https://doi.org/10.3389/fneur.2014.00193.

Article 
PubMed 
PubMed Central 

Google Scholar
Â