Nilsson, A. & Pettersson, L. G. M. The structural origin of anomalous properties of liquid water. Nat. Commun. 6, 8998 (2015).

Article 
ADS 

Google Scholar
 

Li, S. et al. Attosecond-pump attosecond-probe X-ray spectroscopy of liquid water. Science 383, 1118–1122 (2024).

Article 
ADS 

Google Scholar
 

Angell, C. A., Sichina, W. J. & Oguni, M. Heat capacity of water at extremes of supercooling and superheating. J. Phys. Chem. 86, 998–1002 (1982).

Article 
ADS 

Google Scholar
 

Huang, C. et al. Increasing correlation length in bulk supercooled H2O, D2O, and NaCl solution determined from small angle X-ray scattering. J. Chem. Phys. 133, 134504 (2010).

Article 
ADS 

Google Scholar
 

Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phase behaviour of metastable water. Nature 360, 324–328 (1992).

Article 
ADS 

Google Scholar
 

Palmer, J. C. et al. Metastable liquid–liquid transition in a molecular model of water. Nature 510, 385–388 (2014).

Article 
ADS 

Google Scholar
 

Debenedetti, P. G., Sciortino, F. & Zerze, G. H. Second critical point in two realistic models of water. Science 369, 289–292 (2020).

Article 
ADS 

Google Scholar
 

Kim, K. H. et al. Maxima in the thermodynamic response and correlation functions of deeply supercooled water. Science 358, 1589–1593 (2017).

Article 
ADS 
MathSciNet 

Google Scholar
 

Kim, K. H. et al. Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure. Science 370, 978–982 (2020).

Article 
ADS 

Google Scholar
 

Pathak, H. et al. Enhancement and maximum in the isobaric specific-heat capacity measurements of deeply supercooled water using ultrafast calorimetry. Proc. Natl Acad. Sci. USA 118, e2018379118 (2021).

Article 

Google Scholar
 

Torre, R., Bartolini, P. & Righini, R. Structural relaxation in supercooled water by time-resolved spectroscopy. Nature 428, 296–299 (2004).

Article 
ADS 

Google Scholar
 

Taschin, A., Bartolini, P., Eramo, R., Righini, R. & Torre, R. Evidence of two distinct local structures of water from ambient to supercooled conditions. Nat. Commun. 4, 2401 (2013).

Article 
ADS 

Google Scholar
 

Dehaoui, A., Issenmann, B. & Caupin, F. Viscosity of deeply supercooled water and its coupling to molecular diffusion. Proc. Natl Acad. Sci. USA 112, 12020–12025 (2015).

Article 
ADS 

Google Scholar
 

Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).

Article 
ADS 

Google Scholar
 

Angell, C. A. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133, 13–31 (1991).

Article 
ADS 

Google Scholar
 

Johari, G. P., Hallbrucker, A. & Mayer, E. The glass–liquid transition of hyperquenched water. Nature 330, 552–553 (1987).

Article 
ADS 

Google Scholar
 

Hallbrucker, A., Mayer, E. & Johari, G. P. The heat capacity and glass transition of hyperquenched glassy water. Philos. Mag. B 60, 179–187 (1989).

Article 
ADS 

Google Scholar
 

Amann-Winkel, K. et al. Water’s second glass transition. Proc. Natl Acad. Sci. USA 110, 17720–17725 (2013).

Article 
ADS 

Google Scholar
 

Sciortino, F., Gallo, P., Tartaglia, P. & Chen, S.-H. Supercooled water and the kinetic glass transition. Phys. Rev. E 54, 6331–6343 (1996).

Article 
ADS 

Google Scholar
 

De Marzio, M., Camisasca, G., Rovere, M. & Gallo, P. Microscopic origin of the fragile to strong crossover in supercooled water: the role of activated processes. J. Chem. Phys. 146, 084502 (2017).

Article 
ADS 

Google Scholar
 

Saito, S. Unraveling the dynamic slowdown in supercooled water: the role of dynamic disorder in jump motions. J. Chem. Phys. 160, 194506 (2024).

Article 
ADS 

Google Scholar
 

Shi, R., Russo, J. & Tanaka, H. Origin of the emergent fragile-to-strong transition in supercooled water. Proc. Natl Acad. Sci. USA 115, 9444–9449 (2018).

Article 
ADS 

Google Scholar
 

Xu, Y., Petrik, N. G., Smith, R. S., Kay, B. D. & Kimmel, G. A. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K. Proc. Natl Acad. Sci. USA 113, 14921–14925 (2016).

Article 
ADS 

Google Scholar
 

Sellberg, J. A. et al. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510, 381–384 (2014).

Article 
ADS 

Google Scholar
 

Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).

Article 
ADS 

Google Scholar
 

Esmaeildoost, N. et al. Anomalous temperature dependence of the experimental X-ray structure factor of supercooled water. J. Chem. Phys. 155, 214501 (2021).

Article 
ADS 

Google Scholar
 

Cowan, M. L. et al. Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434, 199–202 (2005).

Article 
ADS 

Google Scholar
 

Ramasesha, K., De Marco, L., Mandal, A. & Tokmakoff, A. Water vibrations have strongly mixed intra- and intermolecular character. Nat. Chem. 5, 935–940 (2013).

Article 

Google Scholar
 

Markmann, V. et al. Real-time structural dynamics of the ultrafast solvation process around photo-excited aqueous halides. Chem. Sci. 15, 11391–11401 (2024).

Article 

Google Scholar
 

Prat, E. et al. A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam. Nat. Photon. 14, 748–754 (2020).

Article 
ADS 

Google Scholar
 

Kim, K. H. et al. Anisotropic X-ray scattering of transiently oriented water. Phys. Rev. Lett. 125, 076002 (2020).

Article 
ADS 

Google Scholar
 

Kjær, K. S. et al. Introducing a standard method for experimental determination of the solvent response in laser pump, X-ray probe time-resolved wide-angle X-ray scattering experiments on systems in solution. Phys. Chem. Chem. Phys. 15, 15003–15016 (2013).

Article 

Google Scholar
 

Ihee, H. et al. Ultrafast X-ray diffraction of transient molecular structures in solution. Science 309, 1223–1227 (2005).

Article 
ADS 

Google Scholar
 

Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

Article 
ADS 

Google Scholar
 

Gallo, P. & Rovere, M. Mode coupling and fragile to strong transition in supercooled TIP4P water. J. Chem. Phys. 137, 164503 (2012).

Article 
ADS 

Google Scholar
 

De Marzio, M., Camisasca, G., Rovere, M. & Gallo, P. Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water. J. Chem. Phys. 144, 074503 (2016).

Article 
ADS 

Google Scholar
 

Price, W. S., Ide, H. & Arata, Y. Self-diffusion of supercooled water to 238 K using PGSE NMR diffusion measurements. J. Phys. Chem. A 103, 448–450 (1999).

Article 

Google Scholar
 

Angell, C. A. & Sare, E. J. Glass-forming composition regions and glass transition temperatures for aqueous electrolyte solutions. J. Chem. Phys. 52, 1058–1068 (1970).

Article 
ADS 

Google Scholar
 

Gallo, P. et al. Advances in the study of supercooled water. Eur. Phys. J. E 44, 143 (2021).

Article 

Google Scholar
 

Tanaka, H. Simple physical model of liquid water. J. Chem. Phys. 112, 799–809 (2000).

Article 
ADS 

Google Scholar
 

Starr, F. W., Angell, C. A. & Stanley, H. E. Prediction of entropy and dynamic properties of water below the homogeneous nucleation temperature. Physica A 323, 51–66 (2003).

Article 
ADS 

Google Scholar
 

Caupin, F. Predictions for the properties of water below its homogeneous crystallization temperature revisited. J. Non-Cryst. Solids X 14, 100090 (2022).


Google Scholar
 

Angell, C. A. Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319, 582–587 (2008).

Article 

Google Scholar
 

Xu, L. et al. Relation between the Widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proc. Natl Acad. Sci. USA 102, 16558–16562 (2005).

Article 
ADS 

Google Scholar
 

Singh, R. S., Biddle, J. W., Debenedetti, P. G. & Anisimov, M. A. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water. J. Chem. Phys. 144, 144504 (2016).

Article 
ADS 

Google Scholar
 

Ingold, G. et al. Experimental station Bernina at SwissFEL: condensed matter physics on femtosecond time scales investigated by X-ray diffraction and spectroscopic methods. J. Synchrotron Radiat. 26, 874–886 (2019).

Article 

Google Scholar
 

Knudsen, M. Die maximale Verdampfungsgeschwindigkeit des Quecksilbers. Ann. Phys. 352, 697–708 (1915).

Article 

Google Scholar
 

Maa, J. R. Evaporation coefficient of liquids. Ind. Eng. Chem. Fundam. 6, 504–518 (1967).

Article 

Google Scholar
 

Faubel, M., Schlemmer, S. & Toennies, J. P. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D 10, 269–277 (1988).

Article 
ADS 

Google Scholar
 

Goy, C. et al. Refractive index of supercooled water down to 230.3 K in the wavelength range between 534 and 675 nm. J. Phys. Chem. Lett. 13, 11872–11877 (2022).

Article 

Google Scholar
 

Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540–544 (2012).

Article 
ADS 

Google Scholar
 

James, F. & Roos, M. Minuit—a system for function minimization and analysis of the parameter errors and correlations. Comput. Phys. Commun. 10, 343–367 (1975).

Article 
ADS 

Google Scholar
 

Abascal, J. L. F., Sanz, E., García Fernández, R. & Vega, C. A potential model for the study of ices and amorphous water: TIP4P/Ice. J. Chem. Phys. 122, 234511 (2005).

Article 
ADS 

Google Scholar
 

Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

Article 
ADS 

Google Scholar
 

Saito, S., Bagchi, B. & Ohmine, I. Crucial role of fragmented and isolated defects in persistent relaxation of deeply supercooled water. J. Chem. Phys. 149, 124504 (2018).

Article 
ADS 

Google Scholar
Â