Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Modern Phys. 87, 637–701 (2015).

Poli, N. et al. A transportable strontium optical lattice clock. Appl. Phys. B 117, 1107–1116 (2014).

Moody, G. et al. 2022 Roadmap on integrated quantum photonics. J. Phys. Photon. 4, 012501 (2022).

Monroe, C. & Kim, J. Scaling the Ion Trap Quantum Processor. Science 339, 1164–1169 (2013).

Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quant. 2, 020343 (2021).

Mehta, K. K. et al. Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11, 1066–1070 (2016).

Ivory, M. et al. Integrated optical addressing of a trapped ytterbium ion. Phys. Rev. X 11, 041033 (2021).

Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).

Roeloffzen, C. G. et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Select. Top. Quant. Electron. 24, 1–21 (2018).

Blumenthal, D. J., Heideman, R., Geuzebroek, D., Leinse, A. & Roeloffzen, C. Silicon nitride in silicon photonics. Proceedings of the IEEE 106, 2209–2231 (2018).

Blatt, R., Häffner, H., Roos, C. F., Becher, C. & Schmidt-Kaler, F. Ion Trap Quantum Computing with Ca+ Ions. Quant. Inform. Process. 3, 61–73 (2004).

Nop, G. N., Paudyal, D. & Smith, J. D. H. Ytterbium ion trap quantum computing: the current state-of-the-art. AVS Quant. Sci. 3, 044101 (2021).

Corato-Zanarella, M., Ji, X., Mohanty, A. & Lipson, M. Absorption and scattering limits of silicon nitride integrated photonics in the visible spectrum. Opt. Express 32, 5718–5728 (2024).

West, G. N. et al. Low-loss integrated photonics for the blue and ultraviolet regime. APL Photon. 4, 026101 (2019).

Lu, T.-J. et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Opt. Express 26, 11147–11160 (2018).

Weinberg, Z. A., Rubloff, G. W. & Bassous, E. Transmission, photoconductivity, and the experimental band gap of thermally grown SiO2 films. Phys. Rev. B 19, 3107 (1979).

He, C. et al. Ultra-high Q alumina optical microresonators in the UV and blue bands. Opt. Express 31, 33923–33929 (2023).

Lin, C. et al. UV photonic integrated circuits for far-field structured illumination autofluorescence microscopy. Nat. Commun. 13, 4360 (2022).

Shin, W., Sun, Y., Soltani, M. & Mi, Z. Demonstration of green and UV wavelength high Q aluminum nitride on sapphire microring resonators integrated with microheaters. Appl. Phys. Lett. 118, 211103 (2021).

Hendriks, W., Dawson, B., Mardani, S., Dijkstra, M. & Garcia-Blanco, S. UV integrated photonics in sputter deposited aluminum oxide. Opt. Open (pre-print) (2024).

Castillo, Z. A. et al. CMOS-fabricated ultraviolet light modulators using low-loss alumina piezo-optomechanical photonic circuits. ArXiv (2024).

Hogle, C. W. et al. High-fidelity trapped-ion qubit operations with scalable photonic modulators. npj Quant. Inform. 9, 74 (2023).

Menssen, A. J. et al. Scalable photonic integrated circuits for high-fidelity light control. Optica 10, 1366–1372 (2023).

Fan, Y. et al. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express 28, 21713 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Huang, D. et al. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica 6, 745–752 (2019).

Boller, K. J. et al. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics 7, 4 (2020).

Franken, C. A. A. et al. Hybrid-integrated diode laser in the visible spectral range. Opt. Lett. 46, 4904–4907 (2021).

Winkler, L. V. et al. Widely tunable and narrow-linewidth hybrid-integrated diode laser at 637 nm. Opt. Express 32, 29710–29720 (2024).

Wunderer, T. et al. Single-frequency violet and blue laser emission from AlGaInN photonic integrated circuit chips. Opt. Lett. 48, 2781–2784 (2023).

Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2022).

Siddharth, A. et al. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photon. 7, 046108 (2022).

Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

Liu, D. et al. 226 nm AlGaN/AlN UV LEDs using p-type Si for hole injection and UV reflection. Appl. Phys. Lett. 113, 011111 (2018).

Hendriks, W. A. P. M. et al. Rare-earth ion doped Al2O3 for active integrated photonics. Adv. Phys. X 6, 1833753 (2021).

Bonneville, D. B., Frankis, H. C., Wang, R. & Bradley, J. D. B. Erbium-ytterbium co-doped aluminium oxide waveguide amplifiers fabricated by reactive co-sputtering and wet chemical etching. Opt. Express 28, 30130–30140 (2020).

Kneissl, M., Seong, T.-Y., Han, J. & Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photon. 13, 233–244 (2019).

Hjort, F. et al. A 310 nm optically pumped AlGaN vertical-cavity surface-emitting laser. ACS Photon. 8, 141 (2021).

Schwelb, O. & Frigyes, I. Vernier operation of series-coupled optical microring resonator filters. Microw. Opt. Technol. Lett. 39, 257–261 (2003).

Jakschik, S. et al. Crystallization behavior of thin ALD-Al2O3 films. Thin Solid Films 425, 216–220 (2003).

Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346-353 (2021).

Ranno, L. et al. Integrated Photonics Packaging: Challenges and Opportunities. ACS Photon. 9, 3467–3485 (2022).

van Rees, A. et al. Ring resonator enhanced mode-hop-free wavelength tuning of an integrated extended-cavity laser. Opt. Express 28, 5669–5683 (2020).

Müller, J. et al. Burn-in mechanism of 450 nm InGaN ridge laser test structures. Appl. Phys. Lett. 95, 051104 (2009).

Epping, J. P. et al. Hybrid Integrated Silicon Nitride Lasers (Proc. SPIE 11274, 2020).

Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940 (1958).

Dullo, F. T. et al. Low-loss, low-background aluminum oxide waveguide platform for broad-spectrum on-chip microscopy. Opt. Lett. 50, 2159–2162 (2025).

Zhao, R. et al. Hybrid dual-gain tunable integrated InP-Si3N4 external cavity laser. Opt. Express 29, 10958–10966 (2021).

Komljenovic, T. et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J. Select. Top. Quant. Electron. 21, 214–222 (2015).

Mardani, S., Dijkstra, M., Hendriks, W. A. P. M., Nijhuis-Groen, M. P. & García-Blanco, S. M. Low-loss chemical mechanically polished Al2O3 thin films for UV integrated photonics (23rd European Conference on Integrated Optics, 2022).

McKay, E., Pruiti, N. G., May, S. & Sorel, M. High-confinement alumina waveguides with sub-dB/cm propagation losses at 450 nm. Sci. Rep. 13, 19917 (2023).

Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D 94, 124043 (2016).

Sawamura, H., Toyoda, K. & Urabe, S. Optimization of Doppler cooling of a single 40Ca+ Ion. Jap. J. Appl. Phys. 46, 1713 (2007).

Chichibu, S. F. et al. Optical and structural studies in InGaN quantum well structure laser diodes. J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process. Measure. Phenomena 19, 2177–2183 (2001).

Romero-García, S., Merget, F., Zhong, F., Finkelstein, H. & Witzens, J. Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector. Opt. Lett. 38, 2521–2523 (2013).

Taylor, P. et al. Investigation of the 2S1/2-2D5/2 clock transition in a single ytterbium ion. Phys. Rev. A56, 2699 (1997).

Tsokos, C. et al. True time delay optical beamforming network based on hybrid InP-silicon nitride integration. J. Lightw. Technol. 39, 5845–5854 (2021).

Epping, J. P. et al. High power, tunable, narrow linewidth dual gain hybrid laser. In Laser Congress 2019 (ASSL, LAC, LS&C) (OSA).

Franken, C. A. A. et al. High-power and narrow-linewidth laser on thin-film lithium niobate enabled by photonic wire bonding. APL Photon. 10, 026107 (2025).

Franken, C. A. A. et al. Milliwatt-level UV generation using sidewall poled lithium niobate. ArXiv (2025).

van Emmerik, C. I. et al. Relative oxidation state of the target as guideline for depositing optical quality RF reactive magnetron sputtered Al2O3 layers. Opt. Mater. Express 10, 1451–1462 (2020).

Saruwatari, M. & Nawata, K. Semiconductor laser to single-mode fiber coupler. Appl. Opt. 18, 1847–1856 (1979).

Donati, S. & Horng, R. H. The diagram of feedback regimes revisited. IEEE J. Sel. Top. Quantum Electron. 19, 1500309 (2013).

Schoedl, T. et al. Facet degradation of GaN heterostructure laser diodes. J. Appl. Phys. 97, 123102 (2005).

Richter, L. E., Mandelberg, H. I., Kruger, M. S. & McGrath, P. A. Linewidth determination from self-heterodyne measurements with subcoherence delay times. IEEE J. Quant. Electron. 22, 2070–2074 (1986).

van Rees, A. Widely-tunable and ultra-stable hybrid-integrated diode lasers. Ph.D. thesis, University of Twente, Enschede, The Netherlands (2024).

Lasher, G. & Stern, F. Spontaneous and stimulated recombination radiation in semiconductors. Phys. Rev. 133, A553 (1964).

Wenzel, H., Kantner, M., Radziunas, M. & Bandelow, U. Semiconductor laser linewidth theory revisited. Appl. Sci. 11, 6004 (2021).

Henry, C. Theory of the linewidth of semiconductor lasers. IEEE J. Quant. Electron. 18, 259–264 (1982).

Ujihara, K. Phase noise in a laser with output coupling. IEEE J. Quant. Electron. 20, 814–818 (1984).

Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).

Kondratiev, N. & Gorodetsky, M. Thermorefractive noise in whispering gallery mode microresonators: analytical results and numerical simulation. Phys. Lett. A 382, 2265–2268 (2018).

Franta, D., Nečas, D., Ohlídal, I. & Giglia, A. Optical characterization of SiO2 thin films using universal dispersion model over wide spectral range. In Optical Micro- and Nanometrology VI, vol. 9890, 989014 (SPIE, 2016).

Meng, F. W., Xu, B. & Tian, Q. Growth of near-stoichiometric lithium tantalite crystal and its optical characterization. Adv. Mater. Res. 900, 333–336 (2014).

Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242 (2021).

Article 

Google Scholar
 

Cody, G. Urbach edge of crystalline and amorphous silicon: a personal review. J. Non Cryst. Solids 141, 3–15 (1992).

Chiles, J., Khan, S., Ma, J. & Fathpour, S. High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics. Appl. Phys. Lett. 103 (2013).