Simarro PP, Diarra A, Ruiz Postigo JA, Franco JR, Jannin JG. The human African trypanosomiasis control and surveillance programme of the world health organization 2000–2009: the way forward. PLoS Negl Trop Dis. 2011;5:e1007. https://doi.org/10.1371/journal.pntd.0001007.
Franco JR, Cecchi G, Priotto G, Paone M, Diarra A, Grout L, et al. Monitoring the elimination of human African trypanosomiasis at continental and country level: update to 2018. PLoS Negl Trop Dis. 2020;14:e0008261. https://doi.org/10.1371/journal.pntd.0008261.
Holt HR, Selby R, Mumba C, Napier GB, Guitian J. Assessment of animal African trypanosomiasis (AAT) vulnerability in cattle-owning communities of sub-Saharan Africa. Parasit Vectors. 2016;9:53. https://doi.org/10.1186/s13071-016-1336-5.
Vreysen MJB, Seck MT, Sall B, Bouyer J. Tsetse flies: their biology and control using area-wide integrated pest management approaches. J Invertebr Pathol. 2013;112:S15–25. https://doi.org/10.1016/j.jip.2012.07.026.
Wang J, Weiss BL, Aksoy S. Tsetse fly microbiota: form and function. Front Cell Infect Microbiol. 2013. https://doi.org/10.3389/fcimb.2013.00069.
Aksoy S, Weiss BL, Attardo GM. Trypanosome transmission dynamics in Tsetse. Curr Opin Insect Sci. 2014;3:43–9. https://doi.org/10.1016/j.cois.2014.07.003.
Bing X, Attardo GM, Vigneron A, Aksoy E, Scolari F, Malacrida A, et al. Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proceedings of the Royal Society B: Biological Sciences. 2017;284:20170360. https://doi.org/10.1098/rspb.2017.0360.
Aksoy S, Attardo G. Paratransgenesis applied for control of Tsetse transmitted sleeping sickness. Transgenesis and the management of vector-borne disease. New York, NY: Springer New York; 2008. pp. 35–48. https://doi.org/10.1007/978-0-387-78225-6_3.
Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in Tsetse flies. Appl Environ Microbiol. 2014;80:5844–53. https://doi.org/10.1128/AEM.01150-14.
Benoit JB, Vigneron A, Broderick NA, Wu Y, Sun JS, Carlson JR, et al. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. eLife. 2017. https://doi.org/10.7554/elife.19535.
Weiss BL, Wang J, Aksoy S. Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol. 2011;9:e1000619. https://doi.org/10.1371/journal.pbio.1000619.
Weiss BL, Maltz M, Aksoy S. Obligate symbionts activate immune system development in the Tsetse fly. J Immunol. 2012;188:3395–403. https://doi.org/10.4049/jimmunol.1103691.
Weiss BL, Wang J, Maltz MA, Wu Y, Aksoy S. Trypanosome infection establishment in the Tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog. 2013;9:e1003318. https://doi.org/10.1371/journal.ppat.1003318.
Doudoumis V, Blow F, Saridaki A, Augustinos A, Dyer NA, Goodhead I, et al. Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in Tsetse flies: Spiroplasma is present in both laboratory and natural populations. Sci Rep. 2017;7:4699. https://doi.org/10.1038/s41598-017-04740-3.
Dieng MM, Dera KM, Moyaba P, Ouedraogo GMS, Demirbas-Uzel G, Gstöttenmayer F, et al. Prevalence of Trypanosoma and Sodalis in wild populations of Tsetse flies and their impact on sterile insect technique programmes for Tsetse eradication. Sci Rep. 2022;12:3322. https://doi.org/10.1038/s41598-022-06699-2.
Awuoche EO, Smallenberger G, Bruzzese DL, Orfano A, Weiss BL, Aksoy S. Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the Tsetse fly Glossina fuscipes. PLoS Pathog. 2025;21:e1012692. https://doi.org/10.1371/journal.ppat.1012692.
Son JH, Weiss BL, Schneider DI, Dera KM, Gstöttenmayer F, Opiro R, et al. Infection with endosymbiotic Spiroplasma disrupts Tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLOS Pathog. 2021;17:e1009539. https://doi.org/10.1371/journal.ppat.1009539.
Schneider DI, Saarman N, Onyango MG, Hyseni C, Opiro R, Echodu R, et al. Spatio-temporal distribution of Spiroplasma infections in the Tsetse fly (Glossina fuscipes fuscipes) in Northern Uganda. PLoS Negl Trop Dis. 2019;13:e0007340. https://doi.org/10.1371/journal.pntd.0007340.
Bové JM, Renaudin J, Saillard C, Foissac X, Garnier M. Spiroplasma citri, a plant pathogenic Mollicute: relationships with its two hosts, the plant and the leafhopper vector. Annu Rev Phytopathol. 2003;41:483–500. https://doi.org/10.1146/annurev.phyto.41.052102.104034.
Whitcomb RF, Tully JG. The Mycoplasmas. United States of America: Academic press; 1979.
Anbutsu H, Fukatsu T. Spiroplasma as a model insect endosymbiont. Environ Microbiol Rep. 2011;3:144–53. https://doi.org/10.1111/j.1758-2229.2010.00240.x.
Fukatsu T, Nikoh N. Endosymbiotic microbiota of the bamboo pseudococcid Antonina crawii (Insecta, Homoptera). Appl Environ Microbiol. 2000;66:643–50. https://doi.org/10.1128/AEM.66.2.643-650.2000.
Lo W-S, Chen L-L, Chung W-C, Gasparich GE, Kuo C-H. Comparative genome analysis of Spiroplasma melliferum IPMB4A, a honeybee-associated bacterium. BMC Genomics. 2013;14:22. https://doi.org/10.1186/1471-2164-14-22.
Markham PG. Spiroplasmas in leafhoppers: a review. Yale J Biol Med. 1983;56:745–51.
Mouches C, Bové JM, Tully JG, Rose DL, McCoy RE, Carle-Junca P, et al. Spiroplasma apis, a new species from the honey-bee Apis mellifera. Ann Inst Pasteur Microbiol. 1983;134:383–97. https://doi.org/10.1016/S0769-2609(83)80063-5.
Tully JG, Rose DL, Yunker CE, Carle P, BOVe JM, Williamson DL, et al. Spiroplasma ixodetis sp. nov., a new species from Ixodes pacificus ticks collected in Oregon. Int J Syst Evol Microbiol. 1995;45:23–8. https://doi.org/10.1099/00207713-45-1-23.
Filee J, Lopez-Villavicencio M, Debat V, Fourdin R, Salazar C, Silva-Brandao K, et al. Genome evolution and between-host transmission of Spiroplasma endosymbiont in wild communities of Morpho butterflies. Preprint. 2024. https://doi.org/10.1101/2024.02.22.581604.
Ballinger MJ, Perlman SJ. Generality of toxins in defensive symbiosis: ribosome-inactivating proteins and defense against parasitic wasps in Drosophila. PLoS Pathog. 2017;13:e1006431. https://doi.org/10.1371/journal.ppat.1006431.
Hamilton PT, Peng F, Boulanger MJ, Perlman SJ. A ribosome-inactivating protein in a Drosophila defensive symbiont. Proc Natl Acad Sci. 2016;113:350–5. https://doi.org/10.1073/pnas.1518648113.
Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ. Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science. 2010;329:212–5. https://doi.org/10.1126/science.1188235.
Paredes JC, Herren JK, Schüpfer F, Lemaitre B. The role of lipid competition for endosymbiont-mediated protection against parasitoid wasps in Drosophila. mBio. 2016;7:e01006-16. https://doi.org/10.1128/mBio.01006-16.
Harumoto T, Lemaitre B. Male-killing toxin in a bacterial symbiont of Drosophila. Nature. 2018;557:252–5. https://doi.org/10.1038/s41586-018-0086-2.
Tinsley MC, Majerus MEN. A new male-killing parasitism: Spiroplasma bacteria infect the Ladybird beetle Anisosticta novemdecimpunctata (Coleoptera: Coccinellidae). Parasitology. 2006;132:757–65. https://doi.org/10.1017/S0031182005009789.
Jiggins FM, Hurst GDD, Jiggins CD, Schulenburg JHG, Majerus MEN. The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology. 2000;120:439–46. https://doi.org/10.1017/S0031182099005867.
Gerth M, Martinez-Montoya H, Ramirez P, Masson F, Griffin JS, Aramayo R, et al. Rapid Mol Evol Spiroplasma Symbionts Drosophila. 2020. https://doi.org/10.1101/2020.06.23.165548.
Paredes JC, Herren JK, Schüpfer F, Marin R, Claverol S, Kuo C-H, et al. Genome sequence of the Drosophila melanogaster male-killing Spiroplasma strain MSRO endosymbiont. mBio. 2015;6:e02437-14. https://doi.org/10.1128/mBio.02437-14.
Dera K-SM, Dieng MM, Moyaba P, Ouedraogo GM, Pagabeleguem S, Njokou F, et al. Prevalence of Spiroplasma and interaction with wild Glossina tachinoides microbiota. Parasite. 2023;30:62. https://doi.org/10.1051/parasite/2023064.
Dera KM, Barro DT, Kaboré BA, Gstöttenmayer F, Dieng MM, Pagabeleguem S, et al. Spiroplasma infection in colonized Glossina fuscipes fuscipes: impact on mass rearing and the sterile insect technique. Insect Sci. 2025;1744–7917. https://doi.org/10.1111/1744-7917.70078.
Masson F, Calderon Copete S, Schüpfer F, Garcia-Arraez G, Lemaitre B. In vitro culture of the insect endosymbiont Spiroplasma poulsonii highlights bacterial genes involved in host-symbiont interaction. mBio. 2018;9:e00024-18. https://doi.org/10.1128/mBio.00024-18.
R Core Team. R: A language and environment for statistical computing. 2024.
RStudio Team. RStudio: Integrated Development for R. 2022.
Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6:986–94. https://doi.org/10.1101/gr.6.10.986.
Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA, Brock TD. Brock biology of microorganisms. Sixteenth edition, global edition. Harlow: Pearson Education Limited; 2022.
International Atomic Energy Agency. FAO/IAEA Standard operating procedures for mass-rearing tsetse flies. 2006.
Bauer B, Wetzel H. A new membrane for feeding Glossina morsitans Westw. (Diptera: Glossinidae). Bull Entomol Res. 1976;65:563–5. https://doi.org/10.1017/S0007485300006246.
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. https://doi.org/10.1093/nar/29.9.e45.
Bruzzese DJ, Weiss BL, Echodu R, Mireji PO, Abd-Alla AMM, Aksoy S. New Tsetse (Glossina fuscipes fuscipes) genomes generated from wild and laboratory‐reared specimens. Insect Sci. 2025;1744–7917. https://doi.org/10.1111/1744-7917.70085.
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of samtools and BCFtools. Gigascience. 2021;10:giab008. https://doi.org/10.1093/gigascience/giab008.
Steinig E, Coin L. Nanoq: ultra-fast quality control for nanopore reads. J Open Source Softw. 2022;7:2991. https://doi.org/10.21105/joss.02991.
Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. MetaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods. 2020;17:1103–10. https://doi.org/10.1038/s41592-020-00971-x.
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017. https://doi.org/10.1101/gr.215087.116. :gr.215087.116.
Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics. 2016;32:2103–10. https://doi.org/10.1093/bioinformatics/btw152.
Chen Y, Nie F, Xie S-Q, Zheng Y-F, Dai Q, Bray T, et al. Efficient assembly of nanopore reads via highly accurate and intact error correction. Nat Commun. 2021;12:60. https://doi.org/10.1038/s41467-020-20236-7.
Hu J, Wang Z, Sun Z, Hu B, Ayoola AO, Liang F, et al. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads. Genome Biol. 2024;25:107. https://doi.org/10.1186/s13059-024-03252-4.
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90. https://doi.org/10.1093/bioinformatics/bty560.
Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol. 2022;18:e1009802. https://doi.org/10.1371/journal.pcbi.1009802.
Bouras G, Judd LM, Edwards RA, Vreugde S, Stinear TP, Wick RR. How low can you go? Short-read polishing of Oxford Nanopore bacterial genome assemblies. Microb Genom. 2024;10:001254. https://doi.org/10.1099/mgen.0.001254.
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100. https://doi.org/10.1093/bioinformatics/bty191.
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18:170–5. https://doi.org/10.1038/s41592-020-01056-5.
Bouras G, Grigson SR, Papudeshi B, Mallawaarachchi V, Roach MJ. Dnaapler: a tool to reorient circular microbial genomes. J Open Source Softw. 2024;9:5968. https://doi.org/10.21105/joss.05968.
Formenti G, Abueg L, Brajuka A, Brajuka N, Gallardo-Alba C, Giani A, et al. Gfastats: conversion, evaluation and manipulation of genome sequences using assembly graphs. Bioinformatics. 2022;38:4214–6. https://doi.org/10.1093/bioinformatics/btac460.
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2. https://doi.org/10.1093/bioinformatics/btv351.
Frolova D, Lima L, Roberts LW, Bohnenkämper L, Wittler R, Stoye J, et al. Applying rearrangement distances to enable plasmid epidemiology with pling. Microb Genom. 2024;10:001300. https://doi.org/10.1099/mgen.0.001300.
Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, et al. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res. 2020;49:D1020–8. https://doi.org/10.1093/nar/gkaa1105.
Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genomics. 2021;7. https://doi.org/10.1099/mgen.0.000685.
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9. https://doi.org/10.1093/molbev/msab293.
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31. https://doi.org/10.1016/j.jmb.2015.11.006.
Wishart DS, Han S, Saha S, Oler E, Peters H, Grant JR, et al. PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res. 2023;51:W443–50. https://doi.org/10.1093/nar/gkad382.
Wang M, Liu G, Liu M, Tai C, Deng Z, Song J, et al. ICEberg 3.0: functional categorization and analysis of the integrative and conjugative elements in bacteria. Nucleic Acids Res. 2024;52:D732–7. https://doi.org/10.1093/nar/gkad935.
Xie Z, Tang H. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics. 2017;33:3340–7. https://doi.org/10.1093/bioinformatics/btx433.
Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40:1023–5. https://doi.org/10.1038/s41587-021-01156-3.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. https://doi.org/10.1186/1471-2105-10-421.
Blum M, Andreeva A, Florentino LC, Chuguransky SR, Grego T, Hobbs E, et al. InterPro: the protein sequence classification resource in 2025. Nucleic Acids Res. 2025;53:D444–56. https://doi.org/10.1093/nar/gkae1082.
Löytynoja A. Phylogeny-aware alignment with PRANK. In: Russell DJ, editor. Multiple sequence alignment methods. Totowa, NJ: Humana; 2014. pp. 155–70. https://doi.org/10.1007/978-1-62703-646-7_10.
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5. https://doi.org/10.1093/bioinformatics/btz305.
O’Leary NA, Cox E, Holmes JB, Anderson WR, Falk R, Hem V, et al. Exploring and retrieving sequence and metadata for species across the tree of life with NCBI datasets. Sci Data. 2024;11:732. https://doi.org/10.1038/s41597-024-03571-y.
Xu X, Yin Z, Yan L, Zhang H, Xu B, Wei Y, et al. RabbitTClust: enabling fast clustering analysis of millions of bacteria genomes with MinHash sketches. Genome Biol. 2023;24:121. https://doi.org/10.1186/s13059-023-02961-6.
Gautreau G, Bazin A, Gachet M, Planel R, Burlot L, Dubois M, et al. PPanGGOLiN: depicting microbial diversity via a partitioned pangenome graph. PLoS Comput Biol. 2020;16:e1007732. https://doi.org/10.1371/journal.pcbi.1007732.
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002;30:3059–66. https://doi.org/10.1093/nar/gkf436.
Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2015;8:12–24. https://doi.org/10.1039/C5AY02550H.
Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol. 2018;14:e1005944. https://doi.org/10.1371/journal.pcbi.1005944.
Goel M, Sun H, Jiao W-B, Schneeberger K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 2019;20:277. https://doi.org/10.1186/s13059-019-1911-0.
Goel M, Schneeberger K. Plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics. 2022;38:2922–6. https://doi.org/10.1093/bioinformatics/btac196.
Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686. https://doi.org/10.21105/joss.01686.
Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics. 2011;12:35. https://doi.org/10.1186/1471-2105-12-35.
O S, Ma LJ. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genomics. 2021;7. https://doi.org/10.1099/mgen.0.000685.
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8. https://doi.org/10.1093/bioinformatics/btw354.
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9. https://doi.org/10.1038/nmeth.4197.
Karaji R, Peña-Castillo L, OpDetect. A convolutional and recurrent neural network classifier for precise and sensitive operon detection from RNA-seq data. 2025;:2025.03.24.645056. https://doi.org/10.1101/2025.03.24.645056.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.
Chen Y, Chen L, Lun ATL, Baldoni PL, Smyth GK. edgeR v4: powerful differential analysis of sequencing data with expanded functionality and improved support for small counts and larger datasets. Nucleic Acids Res. 2025;53:gkaf018. https://doi.org/10.1093/nar/gkaf018.
Lo W-S, Haryono M, Gasparich GE, Kuo C-H. Complete genome sequence of Spiroplasma sp. TU-14. Genome Announc. 2017;5:e01465-16. https://doi.org/10.1128/genomeA.01465-16.
Haryono M, Lo W-S, Gasparich GE, Kuo C-H. Complete genome sequence of Spiroplasma sp. NBRC 100390. Genome Announc. 2017;5:e00008-17. https://doi.org/10.1128/genomeA.00008-17.
Freeman BA, Sissenstein R, McManus TT, Woodward JE, Lee IM, Mudd JB. Lipid composition and lipid metabolism of Spiroplasma citri. J Bacteriol. 1976;125:946–54. https://doi.org/10.1128/jb.125.3.946-954.1976.
Herren JK, Paredes JC, Schüpfer F, Arafah K, Bulet P, Lemaitre B. Insect endosymbiont proliferation is limited by lipid availability. eLife. 2014;3:e02964. https://doi.org/10.7554/eLife.02964.
Wingreen NS, Huang KC. Physics of intracellular organization in bacteria. Annu Rev Microbiol. 2015;69(1):361–79. https://doi.org/10.1146/annurev-micro-091014-104313.
Masson F, Rommelaere S, Schüpfer F, Boquete J-P, Lemaitre B. Disproportionate investment in Spiralin B production limits in-host growth and favors the vertical transmission of Spiroplasma insect endosymbionts. Proc Natl Acad Sci U S A. 2022;119:e2208461119. https://doi.org/10.1073/pnas.2208461119.
Zha G-D, Yang D-H, Wang J-J, Yang B, Yu H-S. Infection function of adhesin-like protein ALP609 from Spiroplasma melliferum CH-1. Curr Microbiol. 2018;75:701–8. https://doi.org/10.1007/s00284-018-1435-y.
Béven L, Duret S, Batailler B, Dubrana M-P, Saillard C, Renaudin J, et al. The repetitive domain of ScARP3d triggers entry of Spiroplasma citri into cultured cells of the vector Circulifer haematoceps. PLoS ONE. 2012;7:e48606. https://doi.org/10.1371/journal.pone.0048606.
Pilo P, Frey J, Vilei EM. Molecular mechanisms of pathogenicity of Mycoplasma mycoides subsp. mycoides SC. Vet J. 2007;174:513–21. https://doi.org/10.1016/j.tvjl.2006.10.016.
Tully JG, Whitcomb RF, Clark HF, Williamson DL. Pathogenic Mycoplasmas: cultivation and vertebrate pathogenicity of a new Spiroplasma. Science. 1977;195:892–4. https://doi.org/10.1126/science.841314.
Bell-Sakyi L, Palomar AM, Kazimirova M. Isolation and propagation of a Spiroplasma sp. from Slovakian Ixodes ricinus ticks in Ixodes spp. cell lines. Ticks Tick-borne Dis. 2015;6:601–6. https://doi.org/10.1016/j.ttbdis.2015.05.002.
Steiner T, McGarrity GJ, Phillips DM. Cultivation and partial characterization of Spiroplasmas in cell cultures. Infect Immun. 1982;35:296–304. https://doi.org/10.1128/iai.35.1.296-304.1982.
Masson F, Lemaitre B. Growing ungrowable bacteria: overview and perspectives on insect symbiont culturability. Microbiol Mol Biol Rev. 2020;84:e00089–20. https://doi.org/10.1128/MMBR.00089-20.
Masson F, Schüpfer F, Jollivet C, Lemaitre B. Transformation of the Drosophila sex-manipulative endosymbiont Spiroplasma poulsonii and persisting hurdles for functional genetic studies. Appl Environ Microbiol. 2020;86:e00835-20. https://doi.org/10.1128/AEM.00835-20.
Catchpowle J, Maynard J, Chang BJ, Payne MS, Beeton ML, Furfaro LL. Miniscule mollicutes: current hurdles to bacteriophage identification. Sustainable Microbiol. 2024;1:qvae019. https://doi.org/10.1093/sumbio/qvae019.
Bébéar C-M, Aullo P, Bové J-M, Renaudin J. Spiroplasma citri virus SpV1: characterization of viral sequences present in the Spiroplasmal host chromosome. Curr Microbiol. 1996;32:134–40. https://doi.org/10.1007/s002849900024.
Krafsur ES, Marquez JG, Ouma JO. Structure of some East African Glossina fuscipes fuscipes populations. Med Vet Entomol. 2008;22:222–7. https://doi.org/10.1111/j.1365-2915.2008.00739.x.
Moore LD, Ballinger MJ. The toxins of vertically transmitted Spiroplasma. Front Microbiol. 2023;14:1148263. https://doi.org/10.3389/fmicb.2023.1148263.
Ballinger MJ, Perlman SJ. The defensive Spiroplasma. Curr Opin Insect Sci. 2019;32:36–41. https://doi.org/10.1016/j.cois.2018.10.004.
Hrdina A, Serra Canales M, Arias-Rojas A, Frahm D, Iatsenko I. The endosymbiont Spiroplasma poulsonii increases Drosophila melanogaster resistance to pathogens by enhancing iron sequestration and melanization. MBio. 2024;15:e0093624. https://doi.org/10.1128/mbio.00936-24.
Rattner R, Thapa SP, Dang T, Osman F, Selvaraj V, Maheshwari Y, et al. Genome analysis of Spiroplasma citri strains from different host plants and its leafhopper vectors. BMC Genomics. 2021;22:373. https://doi.org/10.1186/s12864-021-07637-8.
Wang GH, Sun BF, Xiong TL, Wang YK, Murfin KE, Xiao JH, et al. Bacteriophage WO can mediate horizontal gene transfer in endosymbiotic Wolbachia genomes. Front Microbiol. 2016;7:1867. https://doi.org/10.3389/fmicb.2016.01867.
Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304. https://doi.org/10.1038/35012500.
Arnold BJ, Huang I-T, Hanage WP. Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol. 2022;20:206–18. https://doi.org/10.1038/s41579-021-00650-4.
Fortier L-C, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4:354–65. https://doi.org/10.4161/viru.24498.
Tanaka K, Furukawa S, Nikoh N, Sasaki T, Fukatsu T. Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the Wolbachia genome. Appl Environ Microbiol. 2009;75:5676–86. https://doi.org/10.1128/AEM.01172-09.
Beckmann JF, Ronau JA, Hochstrasser M. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat Microbiol. 2017;2:17007. https://doi.org/10.1038/nmicrobiol.2017.7.
Perlmutter JI, Bordenstein SR, Unckless RL, LePage DP, Metcalf JA, Hill T, et al. The phage gene Wmk is a candidate for male killing by a bacterial endosymbiont. PLoS Pathog. 2019;15:e1007936. https://doi.org/10.1371/journal.ppat.1007936.
McNamara CJ, Ant TH, Harvey-Samuel T, White-Cooper H, Martinez J, Alphey L, et al. Transgenic expression of Cif genes from Wolbachia strain wAlbB recapitulates cytoplasmic incompatibility in Aedes aegypti. Nat Commun. 2024;15:869. https://doi.org/10.1038/s41467-024-45238-7.
Martinez J, Klasson L, Welch JJ, Jiggins FM. Life and death of selfish genes: comparative genomics reveals the dynamic evolution of cytoplasmic incompatibility. Mol Biol Evol. 2021. https://doi.org/10.1093/molbev/msaa209.
Arai H, Legeai F, Kageyama D, Sugio A, Simon J-C. Genomic insights into Spiroplasma endosymbionts that induce male-killing and protective phenotypes in the pea aphid. FEMS Microbiol Lett. 2024;371:fnae027. https://doi.org/10.1093/femsle/fnae027.
Knoke LR, Abad Herrera S, Götz K, Justesen BH, Günther Pomorski T, Fritz C, et al. Agrobacterium tumefaciens small lipoprotein Atu8019 is involved in selective outer membrane vesicle (OMV) docking to bacterial cells. Front Microbiol. 2020;11:1228. https://doi.org/10.3389/fmicb.2020.01228.
Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol. 2001;39:1225–36. https://doi.org/10.1111/j.1365-2958.2001.02294.x.
Speare L, Woo M, Dunn AK, Septer AN. A putative lipoprotein mediates cell-cell contact for type VI secretion system-dependent killing of specific competitors. mBio. 2022;13:e0308521. https://doi.org/10.1128/mbio.03085-21.
Duarte EH, Carvalho A, López-Madrigal S, Costa J, Teixeira L. Forward genetics in Wolbachia: regulation of Wolbachia proliferation by the amplification and deletion of an addictive genomic island. PLoS Genet. 2021;17:e1009612. https://doi.org/10.1371/journal.pgen.1009612.
Mills S, Shanahan F, Stanton C, Hill C, Coffey A, Ross RP. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes. 2013;4:4–16. https://doi.org/10.4161/gmic.22371.
Ofir G, Sorek R. Contemporary phage biology: from classic models to new insights. Cell. 2018;172:1260–70. https://doi.org/10.1016/j.cell.2017.10.045.
Silpe JE, Bassler BL. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell. 2019;176:268–80. https://doi.org/10.1016/j.cell.2018.10.059. .e13.
Laganenka L, Sander T, Lagonenko A, Chen Y, Link H, Sourjik V. Quorum sensing and metabolic state of the host control lysogeny-lysis switch of bacteriophage T1. mBio. 2019. https://doi.org/10.1128/mbio.01884-19.
Li D, Liang W, Hu Q, Ren J, Xue F, Liu Q, et al. The effect of a spontaneous induction prophage, phi458, on biofilm formation and virulence in avian pathogenic Escherichia coli. Front Microbiol. 2022. https://doi.org/10.3389/fmicb.2022.1049341.
de Sablet T, Chassard C, Bernalier-Donadille A, Vareille M, Gobert AP, Martin C. Human microbiota-secreted factors inhibit shiga toxin synthesis by enterohemorrhagic Escherichia coli O157:H7. Infect Immun. 2009;77:783–90. https://doi.org/10.1128/IAI.01048-08.
Loś JM, Loś M, Wegrzyn A, Wegrzyn G. Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. FEMS Immunol Med Microbiol. 2010;58:322–9. https://doi.org/10.1111/j.1574-695X.2009.00644.x.
Ramirez P, Martinez Montoya H, Aramayo R, Mateos M. Diverse toxin repertoire but limited metabolic capacities inferred from the draft genome assemblies of three Spiroplasma (Citri clade) strains associated with Drosophila. Microb Genomics. 2025;11. https://doi.org/10.1099/mgen.0.001408.
Lo W-S, Ku C, Chen L-L, Chang T-H, Kuo C-H. Comparison of metabolic capacities and inference of gene content evolution in mosquito-associated Spiroplasma diminutum and S. taiwanense. Genome Biol Evol. 2013;5:1512–23. https://doi.org/10.1093/gbe/evt108.
Geigy R, Huber M, Weinman D, Wyatt GR. Demonstration of trehalose in the vector of African trypanosomiasis: the tsetse fly. Acta Trop. 1959;16:255–62.
Scolari F, Benoit JB, Michalkova V, Aksoy E, Takac P, Abd-Alla AMM, et al. The spermatophore in Glossina morsitans morsitans: insights into male contributions to reproduction. Sci Rep. 2016;6:20334. https://doi.org/10.1038/srep20334.
Naguleswaran A, Fernandes P, Bevkal S, Rehmann R, Nicholson P, Roditi I. Developmental changes and metabolic reprogramming during establishment of infection and progression of Trypanosoma brucei brucei through its insect host. PLoS Negl Trop Dis. 2021;15:e0009504. https://doi.org/10.1371/journal.pntd.0009504.
Welburn SC, Arnold K, Maudlin I, Gooday GW. Rickettsia-like organisms and chitinase production in relation to transmission of trypanosomes by Tsetse flies. Parasitology. 1993;107:141–5. https://doi.org/10.1017/S003118200006724X.
Hennigar SR, McClung JP. Nutritional immunity: starving pathogens of trace minerals. Am J Lifestyle Med. 2016;10:170–3. https://doi.org/10.1177/1559827616629117.
Iatsenko I, Marra A, Boquete J-P, Peña J, Lemaitre B. Iron sequestration by transferrin 1 mediates nutritional immunity in Drosophila melanogaster. Proc Natl Acad Sci USA. 2020;117:7317–25. https://doi.org/10.1073/pnas.1914830117.
Marra A, Masson F, Lemaitre B. The iron transporter Transferrin 1 mediates homeostasis of the endosymbiotic relationship between Drosophila melanogaster and Spiroplasma poulsonii. microLife. 2021;2:uqab008. https://doi.org/10.1093/femsml/uqab008.
Patterson A, Stevens C, Cody RM, Gudauskas RT. Differential amino acid utilization by Spiroplasmas and the effect on growth kinetics. J Gen Appl Microbiol. 1985;31:499–505. https://doi.org/10.2323/jgam.31.499.
de Parreira Aquino G, Mendes Gomes MA, Köpke Salinas R, Laranjeira-Silva MF. Lipid and fatty acid metabolism in trypanosomatids. Microb Cell. 2021;8:262–75. https://doi.org/10.15698/mic2021.11.764.
Atella T, Bittencourt-Cunha PR, Araujo MFC, Silva-Cardoso L, Maya-Monteiro CM, Atella GC. Trypanosoma cruzi modulates lipid metabolism and highjacks phospholipids from the midgut of Rhodnius prolixus. Acta Trop. 2022;233:106552. https://doi.org/10.1016/j.actatropica.2022.106552.
Steverding D, Stierhof YD, Fuchs H, Tauber R, Overath P. Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei. J Cell Biol. 1995;131:1173–82. https://doi.org/10.1083/jcb.131.5.1173.
Pilo P, Vilei EM, Peterhans E, Bonvin-Klotz L, Stoffel MH, Dobbelaere D, et al. A metabolic enzyme as a primary virulence factor of Mycoplasma mycoides subsp. mycoides small colony. J Bacteriol. 2005;187:6824–31. https://doi.org/10.1128/JB.187.19.6824-6831.2005.
MacLEOD ET, Maudlin I, Darby AC, Welburn SC. Antioxidants promote establishment of trypanosome infections in Tsetse. Parasitology. 2007;134:827–31. https://doi.org/10.1017/S0031182007002247.
Stirpe F. Ribosome-inactivating proteins. Toxicon. 2004;44:371–83. https://doi.org/10.1016/j.toxicon.2004.05.004.
Markham RH. Biological control of tsetse: prospects and progress in the use of pupal parasites. Int J Trop Insect Sci. 1986;7:1–4. https://doi.org/10.1017/S1742758400003015.
De Zaeytijd J, Van Damme EJM. Extensive evolution of cereal ribosome-inactivating proteins translates into unique structural features, activation mechanisms, and physiological roles. Toxins. 2017;9:123. https://doi.org/10.3390/toxins9040123.