Fan LL, Chen BH, Dai ZJ. The relation between gallstone disease and cardiovascular disease. Scientific Rep. 2017;7(1):5104.


Google Scholar
 

Zheng Y, Xu M, Li Y, Hruby A, Rimm EB, Hu FB, Wirth J, Albert CM, Rexrode KM, Manson JE, Qi L. Gallstones and Risk of Coronary Heart Disease: Prospective Analysis of 270 000 Men and Women From 3 US Cohorts and Meta-Analysis. Arterioscler Thromb Vasc Biol. 2016;36(9):1997–2003.


Google Scholar
 

Jenks M, Taylor M, Shore J. Cost-utility analysis of the insufflation of warmed humidified carbon dioxide during open and laparoscopic colorectal surgery. Expert Rev Pharmacoecon Outcomes Res. 2017;17(1):99–107.


Google Scholar
 

Balayssac D, Pereira B, Bazin JE, Le Roy B, Pezet D, Gagniere J. Warmed and humidified carbon dioxide for abdominal laparoscopic surgery: meta-analysis of the current literature. Surg Endosc. 2017;31:1–12.


Google Scholar
 

Travagli RA, Anselmi L. Vagal neurocircuitry and its influence on gastric motility. Nat Rev Gastroenterol Hepatol. 2016;13(7):389–401.


Google Scholar
 

Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36.


Google Scholar
 

Kotani N, Hashimoto H, Sato Y, Sessler DI, Yoshioka H, Kitayama M, Matsuki A. Preoperative intradermal acupuncture reduces postoperative pain, nausea and vomiting, analgesic requirement, and sympathoadrenal responses. Anesthesiology. 2001;95(2):349–56.


Google Scholar
 

Berlet M, Fuchtmann J, Bernhard L, Jell A, Weber MC, Neumann PA, Wilhelm D. Laparoscopic Cholecystectomy–A Proper Model Surgery for AI based Prediction of Adverse Events? Analysis of possible predictive values on the basis of the German reimbursement statistics. Curr Dir Biomed Eng. 2022;8(1):5–8.


Google Scholar
 

Ranev D, Teixeira J. History of Computer-Assisted Surgery. Surg Clin North Am. 2020;100(2):209–18.


Google Scholar
 

Lopez-Lopez V, Maupoey J, López-Andujar R, Ramos E, Mils K, Martinez PA, Robles-Campos R. Machine learning-based analysis in the management of iatrogenic bile duct injury during cholecystectomy: a nationwide multicenter study. J Gastrointest Surg. 2022;26(8):1713–23.


Google Scholar
 

Mascagni P, Vardazaryan A, Alapatt D, Urade T, Emre T, Fiorillo C, Padoy N. Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning. Ann Surg. 2022;275(5):955–61.


Google Scholar
 

Shi HY, Lee HH, Tsai JT, Ho WH, Chen CF, Lee KT, Chiu CC. Comparisons of prediction models of quality of life after laparoscopic cholecystectomy: a longitudinal prospective study. PLoS One. 2012;7(12):e51285.


Google Scholar
 

Suárez M, Martínez R, Torres AM, Ramón A, Blasco P, Mateo J. Personalized risk assessment of hepatic fibrosis after cholecystectomy in metabolic-associated steatotic liver disease: a machine learning approach. J Clin Med. 2023;12(20):6489.


Google Scholar
 

Bai M, Guo R, Zhao Q, Li Y. Artificial Intelligence-Based CT Images in Analysis of Postoperative Recovery of Patients Undergoing Laparoscopic Cholecystectomy under Balanced Anesthesia. Scientific Programming. 2021;2021(1):1125573.


Google Scholar
 

15. Wang R, Erus G, Chaudhari P, Davatzikos C. Adapting machine learning diagnostic models to new populations using a small amount of data: Results from clinical neuroscience. ArXiv. 2024;arXiv-2308.

Rosenbacke R, Melhus Å, McKee M, Stuckler D. How Explainable Artificial Intelligence Can Increase or Decrease Clinicians’ Trust in AI Applications in Health Care: Systematic Review. JMIR AI. 2024;3:e53207.


Google Scholar
 

Elfanagely O, Toyoda Y, Othman S, Mellia JA, Basta M, Liu T, Fischer JP. Machine learning and surgical outcomes prediction: a systematic review. J Surg Res. 2021;264:346–61.


Google Scholar
 

Smith LA, Oakden-Rayner L, Bird A, Zeng M, To MS, Mukherjee S, Palmer LJ. Machine learning and deep learning predictive models for long-term prognosis in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. The Lancet Digital Health. 2023;5(12):e872–81.


Google Scholar
 

Chen M, Tan X, Padman R. A machine learning approach to support urgent stroke triage using administrative data and social determinants of health at hospital presentation: retrospective study. J Med Internet Res. 2023;25:e36477.


Google Scholar
 

Bouarfa L, Schneider A, Feussner H, Navab N, Lemke HU, Jonker PP, Dankelman J. Prediction of intraoperative complexity from preoperative patient data for laparoscopic cholecystectomy. Artif Intell Med. 2011;52(3):169–76.


Google Scholar
 

Gupta P, Kingston KA, O’Malley M, Williams RJ, Ramkumar PN. Advancements in artificial intelligence for foot and ankle surgery: a systematic review. Foot Ankle Orthop. 2023;8(1):24730114221151080.


Google Scholar
 

Ali H, Patel P, Malik TF, Pamarthy R, Mohan BP, Asokkumar R, Adler DG. Endoscopic sleeve gastroplasty reintervention score using supervised machine learning. Gastrointest Endosc. 2023;98(5):747–54.


Google Scholar
Â