Hall, E. H. On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Pershan, P. S. Magneto-optical effects. J. Appl. Phys. 38, 1482–1490 (1967).
Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).
Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).
Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys.: Condens. Matter 20, 434203 (2008).
Cheong, S.-W., Talbayev, D., Kiryukhin, V. & Saxena, A. Broken symmetries, non-reciprocity, and multiferroicity. NPJ Quantum Mater. 3, 19 (2018).
Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).
Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).
Strohm, C., Rikken, G. L. J. A. & Wyder, P. Phenomenological evidence for the phonon Hall effect. Phys. Rev. Lett. 95, 155901 (2005).
Onose, Y. et al. Observation of the magnon Hall effect. Science 329, 297–299 (2010).
Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).
Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).
Van Aken, B. B., Rivera, J. P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).
Johnson, R. D. et al. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012).
Hlinka, J., Privratska, J., Ondrejkovic, P. & Janovec, V. Symmetry guide to ferroaxial transitions. Phys. Rev. Lett. 116, 177602 (2016).
Jin, W. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020).
Hayashida, T. et al. Visualization of ferroaxial domains in an order-disorder type ferroaxial crystal. Nat. Commun. 11, 4582 (2020).
Du, K. et al. Kibble–Zurek mechanism of Ising domains. Nat. Phys. 19, 1495–1501 (2023).
Fang, X. et al. Ferrorotational selectivity in ilmenites. J. Am. Chem. Soc. 145, 28022–28029 (2023).
Schmid, H. On ferrotoroidics and electrotoroidic, magnetotoroidic and piezotoroidic effects. Ferroelectrics 252, 41–50 (2001).
Schmid, H. Some symmetry aspects of ferroics and single phase multiferroics. J. Phys.: Condens. Matter 20, 434201 (2008).
Cheong, S.-W., Lim, S., Du, K. & Huang, F.-T. Permutable SOS (symmetry operational similarity). NPJ Quantum Mater. 6, 58 (2021).
Lewińska, S. et al. Magnetic susceptibility and phase transitions in LiNiPO4. Phys. Rev. B 99, 214440 (2019).
Inda, A. & Hayami, S. Nonlinear transverse magnetic susceptibility under electric toroidal dipole ordering. J. Phys. Soc. Jpn 92, 043701 (2023).
Shirane, G., Pickart, S. J., Nathans, R. & Ishikawa, Y. Neutron-diffraction study of antiferromagnetic FeTi03 and its solid solutions with α-Fe2O3. J. Phys. Chem. Solids 10, 35–43 (1959).
Lawson, C. A., Nord, G. L., Dowty, E. & Hargraves, R. B. Antiphase domains and reverse thermoremanent magnetism in ilmenite-hematite minerals. Science 213, 1372–1374 (1981).
Burton, B. P., Robinson, P., McEnroe, S. A., Fabian, K. & Ballar, T. B. A low-temperature phase diagram for ilmenite-rich compositions in the system Fe2O3-FeTiO3. Am. Mineral. 93, 1260–1272 (2008).
Khomskii, D. Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009).
Guo, X. et al. Ferrorotational domain walls revealed by electric quadrupole second harmonic generation microscopy. Phys. Rev. B 107, L180102 (2023).
Yokota, H., Hayashida, T., Kitahara, D. & Kimura, T. Three-dimensional imaging of ferroaxial domains using circularly polarized second harmonic generation microscopy. NPJ Quantum Mater. 7, 106 (2022).
Hayashida, T. et al. Phase transition and domain formation in ferroaxial crystals. Phys. Rev. Mater. 5, 124409 (2021).
Liu, G. et al. Electrical switching of ferro-rotational order in nanometre-thick 1T-TaS2 crystals. Nat. Nanotechnol. 18, 854–860 (2023).
Du, K. et al. Topological spin/structure couplings in layered chiral magnet Cr1/3TaS2: the discovery of spiral magnetic superstructure. Proc. Natl Acad. Sci. USA 118, e2023337118 (2021).
Liou, S. H. & Yao, Y. D. Development of high coercivity magnetic force microscopy tips. J. Magn. Magn. Mater. 190, 130–134 (1998).
Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96–118 (2005).
Gorlach, A. et al. High-harmonic generation driven by quantum light. Nat. Phys. 19, 1689–1696 (2023).
Holleis, L. et al. Anomalous and anisotropic nonlinear susceptibility in the proximate Kitaev magnet α-RuCl3. NPJ Quantum Mater. 6, 66 (2021).
Shivaram, B. S., Dorsey, B., Hinks, D. G. & Kumar, P. Metamagnetism and the fifth-order susceptibility in UPt3. Phys. Rev. B 89, 161108 (2014).
Charilaou, M., Sheptyakov, D., Löffler, J. F. & Gehring, A. U. Large spontaneous magnetostriction in FeTiO3 and adjustable magnetic configuration in Fe(III)-doped FeTiO3. Phys. Rev. B 86, 024439 (2012).
Ishikawa, Y. Electrical properties of FeTiO3-Fe2O3 solid solution series. J. Phys. Soc. Jpn 13, 37–42 (1958).
Hayami, S., Oiwa, R. & Kusunose, H. Unconventional Hall effect and magnetoresistance induced by metallic ferroaxial ordering. Phys. Rev. B 108, 085124 (2023).
Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Li, C., Freeman, A. J., Jansen, H. J. F. & Fu, C. L. Magnetic anisotropy in low-dimensional ferromagnetic systems: Fe monolayers on Ag(001), Au(001), and Pd(001) substrates. Phys. Rev. B 42, 5433–5442 (1990).
Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys.: Condens. Matter 9, 767 (1997).
Raghavender, A. T. et al. Nano-ilmenite FeTiO3: synthesis and characterization. J. Magn. Magn. Mater. 331, 129–132 (2013).
Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys.: Condens. Matter 32, 165902 (2020).
Freimuth, F., Mokrousov, Y., Wortmann, D., Heinze, S. & Blügel, S. Maximally localized Wannier functions within the FLAPW formalism. Phys. Rev. B 78, 035120 (2008).