Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

Article 
ADS 

Google Scholar
 

Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

Article 
ADS 

Google Scholar
 

Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

Article 
ADS 

Google Scholar
 

Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

Article 
ADS 

Google Scholar
 

Gao, D. et al. High-efficiency perovskite solar cells enabled by suppressing intermolecular aggregation in hole-selective contacts. Nat. Photon. 19, 1070–1077 (2025).

Article 
ADS 

Google Scholar
 

Shen, Y. et al. Strain regulation retards natural operation decay of perovskite solar cells. Nature 635, 882–889 (2024).

Article 
ADS 

Google Scholar
 

Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

Article 
ADS 

Google Scholar
 

Guo, R. et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat. Energy 6, 977–986 (2021).

Article 
ADS 

Google Scholar
 

Jiang, Y. et al. Mitigation of vacuum and illumination-induced degradation in perovskite solar cells by structure engineering. Joule 4, 1087–1103 (2020).

Article 

Google Scholar
 

Li, N. et al. Towards commercialization: the operational stability of perovskite solar cells. Chem. Soc. Rev. 49, 8235–8286 (2020).

Article 

Google Scholar
 

Jiang, Q. et al. Towards linking lab and field lifetimes of perovskite solar cells. Nature 623, 313–318 (2023).

Article 
ADS 

Google Scholar
 

Meng, H. et al. Inhibition of halide oxidation and deprotonation of organic cations with dimethylammonium formate for air-processed p–i–n perovskite solar cells. Nat. Energy 9, 536–547 (2024).

Article 
ADS 

Google Scholar
 

Ma, C. et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023).

Article 
ADS 

Google Scholar
 

Zhou, J. et al. Modulation of perovskite degradation with multiple-barrier for light-heat stable perovskite solar cells. Nat. Commun. 14, 6120 (2023).

Article 
ADS 

Google Scholar
 

Hartono, N. T. P. et al. Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset. Nat. Commun. 14, 4869 (2023).

Article 
ADS 

Google Scholar
 

Cheng, W. et al. Molecular bridging of buried interface flattens grain boundary grooves and imparts stress relaxation for performance enhancement and UV stability in perovskite solar cells. Adv. Energy Mater. 15, 2501296 (2025).

Article 

Google Scholar
 

Wang, L. et al. A Eu3+–Eu2+ ion redox shuttle imparts operational durability to Pb–I perovskite solar cells. Science 363, 265–270 (2019).

Article 
ADS 

Google Scholar
 

Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).

Article 
ADS 

Google Scholar
 

Zheng, X. et al. Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Lett. 1, 1014–1020 (2016).

Article 

Google Scholar
 

Xiong, Q. et al. Managed spatial strain uniformity for efficient perovskite photovoltaics enables minimized energy deficit. Joule 8, 817–834 (2024).

Article 

Google Scholar
 

Liu, D. et al. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 20, 1337–1346 (2021).

Article 
ADS 

Google Scholar
 

Xue, D.-J. et al. Regulating strain in perovskite thin films through charge-transport layers. Nat. Commun. 11, 1514 (2020).

Article 
ADS 

Google Scholar
 

Luo, C. et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat. Photon. 17, 856–864 (2023).

Article 
ADS 

Google Scholar
 

Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).

Article 

Google Scholar
 

Jones, T. W. et al. Lattice strain causes non-radiative losses in halide perovskites. Energy Environ. Sci. 12, 596–606 (2019).

Article 

Google Scholar
 

Nie, R. et al. Enhanced coordination interaction with multi-site binding ligands for efficient and stable perovskite solar cells. Nat. Commun. 16, 6438 (2025).

Article 
ADS 

Google Scholar
 

Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

Article 
ADS 

Google Scholar
 

Yang, T. et al. One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 14, 839 (2023).

Article 
ADS 

Google Scholar
 

Pei, F. et al. Inhibiting defect passivation failure in perovskite for perovskite/Cu (In,Ga)Se2 monolithic tandem solar cells with certified efficiency 27.35%. Nat. Energy 10, 824–835 (2025).

Article 
ADS 

Google Scholar
 

Wang, S. et al. Fluorinated isopropanol for improved defect passivation and reproducibility in perovskite solar cells. Nat. Energy 10, 1074–1083 (2025).

Article 
ADS 

Google Scholar
 

Xu, H. et al. Metastable interphase induced pre-strain compensation enables efficient and stable perovskite solar cells. Energy Environ. Sci. 18, 246–255 (2025).

Article 

Google Scholar
 

Iwai, Y. et al. Giant anisotropic thermal expansion of copper-cyanido flat layers with flexible copper nodes. Chem. Commun. 60, 6512–6515 (2024).

Article 

Google Scholar
 

Rolston, N. et al. Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 8, 1802139 (2018).

Article 

Google Scholar
 

Wang, H. et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv. Mater. 31, 1904408 (2019).

Article 

Google Scholar
 

Meng, W. et al. Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells. Joule 6, 458–475 (2022).

Article 

Google Scholar
 

Sun, X. et al. In-plane compressive strain stabilized formamidinium-based perovskite. Matter 8, 101920 (2025).

Article 

Google Scholar
 

Ju, S.-Y. et al. Enhanced phase stability of compressive strain-induced perovskite crystals. ACS Appl. Mater. Interfaces 14, 39996–40004 (2022).

Article 

Google Scholar
 

Wang, S. et al. Enhanced passivation durability in perovskite solar cells via concentration-independent passivators. Joule 8, 1105–1119 (2024).

Article 

Google Scholar
 

Yuan, Y. et al. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016).

Article 

Google Scholar
 

Brennan, M. C. et al. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 3, 204–213 (2018).

Article 

Google Scholar
 

Suo, J. et al. Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nat. Energy 9, 172–183 (2024).

Article 
ADS 

Google Scholar
 

Khenkin, M. et al. Light cycling as a key to understanding the outdoor behaviour of perovskite solar cells. Energy Environ. Sci. 17, 602–610 (2024).

Article 

Google Scholar
 

Li, G. et al. Highly efficient p–i–n perovskite solar cells that endure temperature variations. Science 379, 399–403 (2023).

Article 
ADS 

Google Scholar
 

Rolston, N. et al. Comment on ‘Light-induced lattice expansion leads to high-efficiency perovskite solar cells’. Science 368, eaay8691 (2020).

Article 

Google Scholar
 

Tsai, H. et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 360, 67–70 (2018).

Article 
ADS 

Google Scholar