Arimura GI. Making sense of the way plants sense herbivores. Trends Plant Sci. 2021;26(3):288–98.


Google Scholar
 

Hwang BC, Giardina CP, Adu-Bredu S, Barrios-Garcia MN, Calvo-Alvarado JC, Dargie GC, Diao H, Duboscq-Carra VG, Hemp A, Hemp C, et al. The impact of insect herbivory on biogeochemical cycling in broadleaved forests varies with temperature. Nat Commun. 2024;15(1):6011.


Google Scholar
 

Danner H, Desurmont GA, Cristescu SM, van Dam NM. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytol. 2018;220(3):726–38.


Google Scholar
 

Jin M, Peng Y, Peng J, Zhang H, Shan Y, Liu K, et al. Transcriptional regulation and overexpression of GST cluster enhances pesticide resistance in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Commun Biol. 2023;6(1):1064.


Google Scholar
 

Chen S, Zhang L, Cai X, Li X, Bian L, Luo Z, et al. (E)-nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants. Hortic Res. 2020;7(1):52.


Google Scholar
 

Wang Z, Qu L, Fan Z, Hou L, Hu J, Wang L. Dynamic metabolic responses of resistant and susceptible Poplar clones induced by Hyphantria cunea feeding. Biology. 2024;13(9):723.


Google Scholar
 

Aerts N, Pereira Mendes M, Van Wees SCM. Multiple levels of crosstalk in hormone networks regulating plant defense. Plant J. 2021;105(2):489–504.


Google Scholar
 

Vitiello A, Molisso D, Digilio MC, Giorgini M, Corrado G, Bruce TJA, et al. Zucchini plants alter gene expression and emission of (E)-β-caryophyllene following Aphis gossypii infestation. Front Plant Sci. 2020;11:592603.


Google Scholar
 

Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. Theor Appl Genet. 2024;137(8):195.


Google Scholar
 

Wu H, Han WH, Liang KL, Wang JX, Zhang FB, Ji SX, et al. Using salicylic acid-responsive promoters to drive the expression of jasmonic acid-regulated genes enhances plant resistance to whiteflies. Pest Manag Sci. 2024. https://doi.org/10.1002/ps.8461.


Google Scholar
 

Wang J, Wu D, Wang Y, Xie D. Jasmonate action in plant defense against insects. J Exp Bot. 2019;70(13):3391–400.


Google Scholar
 

Li C, Xu M, Cai X, Han Z, Si J, Chen D. Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs. Int J Mol Sci. 2022;23(7):3945.


Google Scholar
 

Figon F, Baldwin IT, Gaquerel E. Ethylene is a local modulator of jasmonate-dependent phenolamide accumulation during Manduca sexta herbivory in Nicotiana attenuata. Plant Cell Environ. 2021;44(3):964–81.


Google Scholar
 

Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52(1):39.


Google Scholar
 

Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci. 2022;23(5):2690.


Google Scholar
 

Silva DB, Jiménez A, Urbaneja A, Pérez-Hedo M, Bento JM. Changes in plant responses induced by an arthropod influence the colonization behavior of a subsequent herbivore. Pest Manag Sci. 2021;77(9):4168–80.


Google Scholar
 

Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S, et al. Proteomic analysis by iTRAQ-MRM of soybean resistance to Lamprosema Indicate. BMC Genomics. 2017;18(1):444.


Google Scholar
 

Ramaroson ML, Koutouan C, Helesbeux JJ, Le Clerc V, Hamama L, Geoffriau E, Briard M. Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases. Molecules. 2022;27(23):8371.


Google Scholar
 

Kaminski KP, Bovet L, Laparra H, Lang G, De Palo D, Sierro N, et al. Alkaloid chemophenetics and transcriptomics of the Nicotiana genus. Phytochemistry. 2020;177:112424.


Google Scholar
 

Shakeel A, Noor JJ, Jan U, Gul A, Handoo Z, Ashraf N. Saponins, the unexplored secondary metabolites in plant defense: opportunities in integrated pest management. Plants. 2025;14(6):861.


Google Scholar
 

Li H, Zhou Z, Hua H, Ma W. Comparative transcriptome analysis of defense response of rice to Nilaparvata lugens and Chilo suppressalis infestation. Int J Biol Macromol. 2020;163:2270–85.


Google Scholar
 

Xie Q, Dong W, Wang M, Wang J, Sun L, Liu Z, et al. BpWRKY6 regulates insect resistance by affecting jasmonic acid and terpenoid synthesis in Betula platyphylla. Plant Biotechnol J. 2025. https://doi.org/10.1111/pbi.70169.


Google Scholar
 

Liu M, Li H, Chen Y, Wu Z, Wu S, Zhang J, Sun R, Lou Y, Lu J, Li R. The MYC2-JAMYB transcriptional cascade regulates rice resistance to brown planthoppers. New Phytol. 2025;246(4):1834–47.


Google Scholar
 

Chowański S, Adamski Z, Marciniak P, Rosiński G, Büyükgüzel E, Büyükgüzel K, Falabella P, Scrano L, Ventrella E, Lelario F, et al. A review of bioinsecticidal activity of Solanaceae alkaloids. Toxins. 2016;8(3):60.


Google Scholar
 

Pinto CF, Torrico-Bazoberry D, Penna M, Cossio-Rodríguez R, Cocroft R, Appel H, et al. Chemical responses of Nicotiana tabacum (Solanaceae) induced by vibrational signals of a generalist herbivore. J Chem Ecol. 2019;45(8):708–14.


Google Scholar
 

Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, Kovarik A, et al. The origin of tobacco’s T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae). Am J Bot. 2002;89(6):921–8.


Google Scholar
 

Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, et al. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics. 2017;18(1):448.


Google Scholar
 

Wang J, Zhang Q, Tung J, Zhang X, Liu D, Deng Y, et al. High-quality assembled and annotated genomes of Nicotiana tabacum and Nicotiana benthamiana reveal chromosome evolution and changes in defense arsenals. Mol Plant. 2024;17(3):423–37.


Google Scholar
 

Barah P, Bones AM. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. J Exp Bot. 2015;66(2):479–93.


Google Scholar
 

Ge SX, Li TF, Ren LL, Zong SX. Host-plant adaptation in xylophagous insect-microbiome systems: contributionsof longicorns and gut symbionts revealed by parallel metatranscriptome. iScience. 2023;26(5):106680.


Google Scholar
 

Li Y, Cheah BH, Fang YF, Kuang YH, Lin SC, Liao CT, Huang SH, Lin YF, Chuang WP. Transcriptomics identifies key defense mechanisms in rice resistant to both leaf-feeding and phloem feeding herbivores. BMC Plant Biol. 2021;21(1):306.


Google Scholar
 

Chen LM, Li XW, He TJ, Li PJ, Liu Y, Zhou SX, et al. Comparative biochemical and transcriptome analyses in tomato and eggplant reveal their differential responses to Tuta absoluta infestation. Genomics. 2021;113(4):2108–21.


Google Scholar
 

Kiani M, Bryan B, Rush C, Szczepaniec A. Transcriptional responses of resistant and susceptible wheat exposed to wheat curl mite. Int J Mol Sci. 2021;22(5):2703.


Google Scholar
 

Keerthana R, Rakshana P, Salunkhe SR, Sakthi AR, Kokiladevi E, Saraswathi T, Pushpam R, Raveendran M, Sudha M. CRISPR-Cas9 mediated enhancement of abiotic stress resilience in tomato: a comprehensive review of target genes. Mol Biol Rep. 2025;52(1):538.


Google Scholar
 

Choi H, Yi TG, Gho YS, Kim JH, Kim S, Choi YJ, et al. Augmenting carotenoid accumulation by multiplex genome editing of the redundant CCD family in rice. Plant Physiol Biochem. 2025;225:110008.


Google Scholar
 

Kang B, Venkatesh J, Lee JH, Kim JM, Kwon JK, Kang BC. CRISPR/Cas9-mediated editing of eukaryotic elongation factor 1B gamma (eEF1Bγ) reduces tobacco etch virus accumulation in Nicotiana benthamiana. Plant Cell Rep. 2025;44(3):62.


Google Scholar
 

Liu J, Gunapati S, Mihelich NT, Stec AO, Michno JM, Stupar RM. Genome editing in soybean with CRISPR/Cas9. Methods Mol Biol. 2019;1917:217–34.


Google Scholar
 

Woldemariam MG, Onkokesung N, Baldwin IT, Galis I. Jasmonoyl-L-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-L-isoleucine levels and attenuates plant defenses against herbivores. Plant J. 2012;72(5):758–67.


Google Scholar
 

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.


Google Scholar
 

Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, et al. TBtools-II: A one for all, all for one bioinformatics platform for biological big-data mining. Mol Plant. 2023;16(11):1733–42.


Google Scholar
 

Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7:191.


Google Scholar
 

Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, Wullschleger SD. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis Thaliana and Glycine max. Plant Cell Environ. 2011;34(9):1488–506.


Google Scholar
 

Otasek D, Morris JH, Bouças J, Pico AR, Demchak B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 2019;20(1):185.


Google Scholar
 

Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM. 2009;2009:17–20.


Google Scholar
 

Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45(D1):D1040–5.


Google Scholar
 

Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688–91.


Google Scholar
 

Dupadahalli K. A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Curr Sci. 2007;93(6):770.


Google Scholar
 

Horsch RB. Leaf disc transformation. Plant Mol Biology Man. 1988;5:63–71.


Google Scholar
 

Zhang X, Cheng T, Wang G, Yan Y, Xia Q. Cloning and evolutionary analysis of tobacco MAPK gene family. Mol Biol Rep. 2013;40(2):1407–15.


Google Scholar
 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. Methods. 2001;25(4):402–8.


Google Scholar
 

Marlin D, Nicolson SW, Yusuf AA, Stevenson PC, Heyman HM, Krüger K. The only African wild tobacco, Nicotiana africana: alkaloid content and the effect of herbivory. PLoS ONE. 2014;9(7):e102661.


Google Scholar
 

Woldemariam MG, Gális I, Baldwin IT. Jasmonoyl-l-isoleucine hydrolase 1 (JIH1) contributes to a termination of jasmonate signaling in N. attenuata. Plant Signal Behav. 2014;9:e28973.


Google Scholar
 

Zhang Y, Fu Y, Wang Q, Liu X, Li Q, Chen J. Transcriptome analysis reveals rapid defence responses in wheat induced by phytotoxic aphid Schizaphis Graminum feeding. BMC Genomics. 2020;21(1):339.


Google Scholar
 

Malabarba J, Meents AK, Reichelt M, Scholz SS, Peiter E, Rachowka J, Konopka-Postupolska D, Wilkins KA, Davies JM, Oelmüller R, et al. ANNEXIN1 mediates calcium-dependent systemic defense in Arabidopsis plants upon herbivory and wounding. New Phytol. 2021;231(1):243–54.


Google Scholar
 

Niu L, Pan L, Zeng W, Lu Z, Cui G, Fan M, Xu Q, Wang Z, Li G. Dynamic transcriptomes of resistant and susceptible Peach lines after infestation by green Peach aphids (Myzus persicae Sülzer) reveal defence responses controlled by the Rm3 locus. BMC Genomics. 2018;19(1):846.


Google Scholar
 

Tzin V, Fernandez-Pozo N, Richter A, Schmelz EA, Schoettner M, Schäfer M, Ahern KR, Meihls LN, Kaur H, Huffaker A, et al. Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol. 2015;169(3):1727–43.


Google Scholar
 

Appel HM, Fescemyer H, Ehlting J, Weston D, Rehrig E, Joshi T, et al. Transcriptional responses of Arabidopsis Thaliana to chewing and sucking insect herbivores. Front Plant Sci. 2014;5:565.


Google Scholar
 

Zhang Z, Liu W, Ma Z, Zhu W, Jia L. Transcriptional characterization and response to defense elicitors of mevalonate pathway genes in cotton (Gossypium arboreum L.). PeerJ. 2019;7:e8123.


Google Scholar
 

Züst T, Agrawal AA. Mechanisms and evolution of plant resistance to aphids. Nat Plants. 2016;2:15206.


Google Scholar
 

Erb M, Meldau S, Howe GA. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 2012;17(5):250–9.


Google Scholar
 

Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 1998;10(9):1571–80.


Google Scholar
 

Magalhães DM, Borges M, Laumann RA, Caulfield JC, Birkett MA, Blassioli-Moraes MC. Inefficient weapon-the role of plant secondary metabolites in cotton defence against the boll weevil. Planta. 2020;252(5):94.


Google Scholar
 

Prajapati VK, Vijayan V, Vadassery J. Secret weapon of insects: the oral secretion cocktail and its modulation of host immunity. Plant Cell Physiol. 2024;65(8):1213–23.


Google Scholar
 

Jin S, Ren Q, Lian L, Cai X, Bian L, Luo Z, et al. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca Onukii (Matsuda) damage. Planta. 2020;252(1):10.


Google Scholar
 

Luo Q, Duan F, Song W. Transcriptomics integrated with metabolomics reveals the defense response of insect-resistant Zea mays infested with Spodoptera exigua. Heliyon. 2025;11(4):e42565.


Google Scholar
 

Tronchet M, Balagué C, Kroj T, Jouanin L, Roby D. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol. 2010;11(1):83–92.


Google Scholar
 

Materska M, Pabich M, Sachadyn-Król M, Konarska A, Weryszko-Chmielewska E, Chilczuk B, et al. The secondary metabolites profile in horse chestnut leaves infested with horse-chestnut leaf miner. Molecules. 2022;27(17):5471.


Google Scholar
 

Nakata R, Kimura Y, Aoki K, Yoshinaga N, Teraishi M, Okumoto Y, Huffaker A, Schmelz EA, Mori N. Inducible de Novo biosynthesis of isoflavonoids in soybean leaves by Spodoptera Litura derived elicitors: tracer techniques aided by high resolution LCMS. J Chem Ecol. 2016;42(12):1226–36.


Google Scholar
 

Kundu P, Shinde S, Grover S, Sattler SE, Louis J. Caffeic acid O-methyltransferase-dependent flavonoid defenses promote sorghum resistance to fall armyworm infestation. Plant Physiol. 2025;197(3):kiaf071.


Google Scholar
 

Njaci I, Ngugi-Dawit A, Oduor RO, Kago L, Williams B, Hoang LTM, Mundree SG, Ghimire SR. Comparative analysis delineates the transcriptional resistance mechanisms for pod borer resistance in the Pigeonpea wild relative Cajanus scarabaeoides (L.) Thouars. Int J Mol Sci. 2020;22(1):309.


Google Scholar
 

Celedon JM, Whitehill JGA, Madilao LL, Bohlmann J. Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system. Sci Rep. 2020;10(1):12464.


Google Scholar
 

Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-derived terpenoids: a plethora of bioactive compounds with several health functions and industrial applications-a comprehensive overview. Molecules. 2024;29(16):3861.


Google Scholar
 

Wu Z, Wei W, Cheng K, Zheng L, Ma C, Wang Y. Insecticidal activity of triterpenoids and volatile oil from the stems of Tetraena mongolica. Pestic Biochem Physiol. 2020;166:104551.


Google Scholar
 

Halitschke R, Keßler A, Kahl J, Lorenz A, Baldwin IT. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia. 2000;124(3):408–17.


Google Scholar
 

Zhao D, Qin LJ, Zhao DG. RNA interference of the nicotine demethylase gene CYP82E4v1 reduces nornicotine content and enhances Myzus persicae resistance in Nicotiana tabacum L. Plant Physiol Biochem. 2016;107:214–21.


Google Scholar
 

Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT. Nicotine’s defensive function in nature. PLoS Biol. 2004;2(8):E217.


Google Scholar
 

Xu S, Brockmöller T, Navarro-Quezada A, Kuhl H, Gase K, Ling Z, et al. Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proc Natl Acad Sci U S A. 2017;114(23):6133–8.


Google Scholar
 

Pang S, Zhai J, Song J, Rong D, Hong Y, Qiu Y, et al. bHLH19 and bHLH20 repress jasmonate-mediated plant defense against insect herbivores in Arabidopsis. Plant J. 2024;120(6):2623–38.


Google Scholar
 

Guo Q, Major IT, Kapali G, Howe GA. MYC transcription factors coordinate tryptophan-dependent defence responses and compromise seed yield in Arabidopsis. New Phytol. 2022;236(1):132–45.


Google Scholar
 

Xu Z, Li C, Wang X, Lv Z, Li W, Chen W. Transcription factor AabHLH5 participates in JA signaling and negatively regulates artemisinin biosynthesis in Artemisia annua. Physiol Plant. 2025;177(2):e70207.


Google Scholar
 

Lawrence SD, Novak NG. Over-expression of StZFP2 in Solanum tuberosum L. var. Kennebec (potato) inhibits growth of Tobacco Hornworm larvae (THW, Manduca sexta L.). Plant Signal Behav. 2018;13(7):e1489668.


Google Scholar
 

Zhai Y, Li P, Mei Y, Chen M, Chen X, Xu H, Zhou X, Dong H, Zhang C, Jiang W. Three MYB genes co-regulate the phloem-based defence against english grain aphid in wheat. J Exp Bot. 2017;68(15):4153–69.


Google Scholar
 

Ahmed J, Mercx S, Boutry M, Chaumont F. Evolutionary and predictive functional insights into the aquaporin gene family in the allotetraploid plant Nicotiana tabacum. Int J Mol Sci. 2020;21(13):4743.


Google Scholar
 

Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, et al. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol. 2013;14(6):R60.


Google Scholar
 

Lim KY, Matyasek R, Kovarik A, Leitch AR. Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc. 2015;82(4):599–606.


Google Scholar
 

Guayazán-Palacios N, Steinbrenner AD. Plant cell surface receptors at the forefront of the growth-defense trade-off. Dev Cell. 2025;60(4):491–2.


Google Scholar
 

Liu X, Yin Z, Wang Y, Cao S, Yao W, Liu J, et al. Rice cellulose synthase-like protein OsCSLD4 coordinates the trade-off between plant growth and defense. Front Plant Sci. 2022;13:980424.


Google Scholar
 

Guo Q, Yoshida Y, Major IT, Wang K, Sugimoto K, Kapali G, Havko NE, Benning C, Howe GA. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc Natl Acad Sci U S A. 2018;115(45):E10768–77.


Google Scholar
 

Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature. 2007;448(7154):661–5.


Google Scholar
 

Wang H, Wang X, Yu C, Wang C, Jin Y, Zhang H. MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in Poplar. BMC Plant Biol. 2020;20(1):173.


Google Scholar
 

Wager A, Browse J. Social network: JAZ protein interactions expand our knowledge of jasmonate signaling. Front Plant Sci. 2012;3:41.


Google Scholar