Arimura GI. Making sense of the way plants sense herbivores. Trends Plant Sci. 2021;26(3):288–98.
Hwang BC, Giardina CP, Adu-Bredu S, Barrios-Garcia MN, Calvo-Alvarado JC, Dargie GC, Diao H, Duboscq-Carra VG, Hemp A, Hemp C, et al. The impact of insect herbivory on biogeochemical cycling in broadleaved forests varies with temperature. Nat Commun. 2024;15(1):6011.
Danner H, Desurmont GA, Cristescu SM, van Dam NM. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytol. 2018;220(3):726–38.
Jin M, Peng Y, Peng J, Zhang H, Shan Y, Liu K, et al. Transcriptional regulation and overexpression of GST cluster enhances pesticide resistance in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Commun Biol. 2023;6(1):1064.
Chen S, Zhang L, Cai X, Li X, Bian L, Luo Z, et al. (E)-nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants. Hortic Res. 2020;7(1):52.
Wang Z, Qu L, Fan Z, Hou L, Hu J, Wang L. Dynamic metabolic responses of resistant and susceptible Poplar clones induced by Hyphantria cunea feeding. Biology. 2024;13(9):723.
Aerts N, Pereira Mendes M, Van Wees SCM. Multiple levels of crosstalk in hormone networks regulating plant defense. Plant J. 2021;105(2):489–504.
Vitiello A, Molisso D, Digilio MC, Giorgini M, Corrado G, Bruce TJA, et al. Zucchini plants alter gene expression and emission of (E)-β-caryophyllene following Aphis gossypii infestation. Front Plant Sci. 2020;11:592603.
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. Theor Appl Genet. 2024;137(8):195.
Wu H, Han WH, Liang KL, Wang JX, Zhang FB, Ji SX, et al. Using salicylic acid-responsive promoters to drive the expression of jasmonic acid-regulated genes enhances plant resistance to whiteflies. Pest Manag Sci. 2024. https://doi.org/10.1002/ps.8461.
Wang J, Wu D, Wang Y, Xie D. Jasmonate action in plant defense against insects. J Exp Bot. 2019;70(13):3391–400.
Li C, Xu M, Cai X, Han Z, Si J, Chen D. Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs. Int J Mol Sci. 2022;23(7):3945.
Figon F, Baldwin IT, Gaquerel E. Ethylene is a local modulator of jasmonate-dependent phenolamide accumulation during Manduca sexta herbivory in Nicotiana attenuata. Plant Cell Environ. 2021;44(3):964–81.
Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52(1):39.
Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int J Mol Sci. 2022;23(5):2690.
Silva DB, Jiménez A, Urbaneja A, Pérez-Hedo M, Bento JM. Changes in plant responses induced by an arthropod influence the colonization behavior of a subsequent herbivore. Pest Manag Sci. 2021;77(9):4168–80.
Zeng W, Sun Z, Cai Z, Chen H, Lai Z, Yang S, et al. Proteomic analysis by iTRAQ-MRM of soybean resistance to Lamprosema Indicate. BMC Genomics. 2017;18(1):444.
Ramaroson ML, Koutouan C, Helesbeux JJ, Le Clerc V, Hamama L, Geoffriau E, Briard M. Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases. Molecules. 2022;27(23):8371.
Kaminski KP, Bovet L, Laparra H, Lang G, De Palo D, Sierro N, et al. Alkaloid chemophenetics and transcriptomics of the Nicotiana genus. Phytochemistry. 2020;177:112424.
Shakeel A, Noor JJ, Jan U, Gul A, Handoo Z, Ashraf N. Saponins, the unexplored secondary metabolites in plant defense: opportunities in integrated pest management. Plants. 2025;14(6):861.
Li H, Zhou Z, Hua H, Ma W. Comparative transcriptome analysis of defense response of rice to Nilaparvata lugens and Chilo suppressalis infestation. Int J Biol Macromol. 2020;163:2270–85.
Xie Q, Dong W, Wang M, Wang J, Sun L, Liu Z, et al. BpWRKY6 regulates insect resistance by affecting jasmonic acid and terpenoid synthesis in Betula platyphylla. Plant Biotechnol J. 2025. https://doi.org/10.1111/pbi.70169.
Liu M, Li H, Chen Y, Wu Z, Wu S, Zhang J, Sun R, Lou Y, Lu J, Li R. The MYC2-JAMYB transcriptional cascade regulates rice resistance to brown planthoppers. New Phytol. 2025;246(4):1834–47.
Chowański S, Adamski Z, Marciniak P, Rosiński G, Büyükgüzel E, Büyükgüzel K, Falabella P, Scrano L, Ventrella E, Lelario F, et al. A review of bioinsecticidal activity of Solanaceae alkaloids. Toxins. 2016;8(3):60.
Pinto CF, Torrico-Bazoberry D, Penna M, Cossio-Rodríguez R, Cocroft R, Appel H, et al. Chemical responses of Nicotiana tabacum (Solanaceae) induced by vibrational signals of a generalist herbivore. J Chem Ecol. 2019;45(8):708–14.
Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, Kovarik A, et al. The origin of tobacco’s T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae). Am J Bot. 2002;89(6):921–8.
Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, et al. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics. 2017;18(1):448.
Wang J, Zhang Q, Tung J, Zhang X, Liu D, Deng Y, et al. High-quality assembled and annotated genomes of Nicotiana tabacum and Nicotiana benthamiana reveal chromosome evolution and changes in defense arsenals. Mol Plant. 2024;17(3):423–37.
Barah P, Bones AM. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. J Exp Bot. 2015;66(2):479–93.
Ge SX, Li TF, Ren LL, Zong SX. Host-plant adaptation in xylophagous insect-microbiome systems: contributionsof longicorns and gut symbionts revealed by parallel metatranscriptome. iScience. 2023;26(5):106680.
Li Y, Cheah BH, Fang YF, Kuang YH, Lin SC, Liao CT, Huang SH, Lin YF, Chuang WP. Transcriptomics identifies key defense mechanisms in rice resistant to both leaf-feeding and phloem feeding herbivores. BMC Plant Biol. 2021;21(1):306.
Chen LM, Li XW, He TJ, Li PJ, Liu Y, Zhou SX, et al. Comparative biochemical and transcriptome analyses in tomato and eggplant reveal their differential responses to Tuta absoluta infestation. Genomics. 2021;113(4):2108–21.
Kiani M, Bryan B, Rush C, Szczepaniec A. Transcriptional responses of resistant and susceptible wheat exposed to wheat curl mite. Int J Mol Sci. 2021;22(5):2703.
Keerthana R, Rakshana P, Salunkhe SR, Sakthi AR, Kokiladevi E, Saraswathi T, Pushpam R, Raveendran M, Sudha M. CRISPR-Cas9 mediated enhancement of abiotic stress resilience in tomato: a comprehensive review of target genes. Mol Biol Rep. 2025;52(1):538.
Choi H, Yi TG, Gho YS, Kim JH, Kim S, Choi YJ, et al. Augmenting carotenoid accumulation by multiplex genome editing of the redundant CCD family in rice. Plant Physiol Biochem. 2025;225:110008.
Kang B, Venkatesh J, Lee JH, Kim JM, Kwon JK, Kang BC. CRISPR/Cas9-mediated editing of eukaryotic elongation factor 1B gamma (eEF1Bγ) reduces tobacco etch virus accumulation in Nicotiana benthamiana. Plant Cell Rep. 2025;44(3):62.
Liu J, Gunapati S, Mihelich NT, Stec AO, Michno JM, Stupar RM. Genome editing in soybean with CRISPR/Cas9. Methods Mol Biol. 2019;1917:217–34.
Woldemariam MG, Onkokesung N, Baldwin IT, Galis I. Jasmonoyl-L-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-L-isoleucine levels and attenuates plant defenses against herbivores. Plant J. 2012;72(5):758–67.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, et al. TBtools-II: A one for all, all for one bioinformatics platform for biological big-data mining. Mol Plant. 2023;16(11):1733–42.
Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics. 2006;7:191.
Weston DJ, Karve AA, Gunter LE, Jawdy SS, Yang X, Allen SM, Wullschleger SD. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis Thaliana and Glycine max. Plant Cell Environ. 2011;34(9):1488–506.
Otasek D, Morris JH, Bouças J, Pico AR, Demchak B. Cytoscape automation: empowering workflow-based network analysis. Genome Biol. 2019;20(1):185.
Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM. 2009;2009:17–20.
Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45(D1):D1040–5.
Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. 2013;31(8):688–91.
Dupadahalli K. A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Curr Sci. 2007;93(6):770.
Horsch RB. Leaf disc transformation. Plant Mol Biology Man. 1988;5:63–71.
Zhang X, Cheng T, Wang G, Yan Y, Xia Q. Cloning and evolutionary analysis of tobacco MAPK gene family. Mol Biol Rep. 2013;40(2):1407–15.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. Methods. 2001;25(4):402–8.
Marlin D, Nicolson SW, Yusuf AA, Stevenson PC, Heyman HM, Krüger K. The only African wild tobacco, Nicotiana africana: alkaloid content and the effect of herbivory. PLoS ONE. 2014;9(7):e102661.
Woldemariam MG, Gális I, Baldwin IT. Jasmonoyl-l-isoleucine hydrolase 1 (JIH1) contributes to a termination of jasmonate signaling in N. attenuata. Plant Signal Behav. 2014;9:e28973.
Zhang Y, Fu Y, Wang Q, Liu X, Li Q, Chen J. Transcriptome analysis reveals rapid defence responses in wheat induced by phytotoxic aphid Schizaphis Graminum feeding. BMC Genomics. 2020;21(1):339.
Malabarba J, Meents AK, Reichelt M, Scholz SS, Peiter E, Rachowka J, Konopka-Postupolska D, Wilkins KA, Davies JM, Oelmüller R, et al. ANNEXIN1 mediates calcium-dependent systemic defense in Arabidopsis plants upon herbivory and wounding. New Phytol. 2021;231(1):243–54.
Niu L, Pan L, Zeng W, Lu Z, Cui G, Fan M, Xu Q, Wang Z, Li G. Dynamic transcriptomes of resistant and susceptible Peach lines after infestation by green Peach aphids (Myzus persicae Sülzer) reveal defence responses controlled by the Rm3 locus. BMC Genomics. 2018;19(1):846.
Tzin V, Fernandez-Pozo N, Richter A, Schmelz EA, Schoettner M, Schäfer M, Ahern KR, Meihls LN, Kaur H, Huffaker A, et al. Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol. 2015;169(3):1727–43.
Appel HM, Fescemyer H, Ehlting J, Weston D, Rehrig E, Joshi T, et al. Transcriptional responses of Arabidopsis Thaliana to chewing and sucking insect herbivores. Front Plant Sci. 2014;5:565.
Zhang Z, Liu W, Ma Z, Zhu W, Jia L. Transcriptional characterization and response to defense elicitors of mevalonate pathway genes in cotton (Gossypium arboreum L.). PeerJ. 2019;7:e8123.
Züst T, Agrawal AA. Mechanisms and evolution of plant resistance to aphids. Nat Plants. 2016;2:15206.
Erb M, Meldau S, Howe GA. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 2012;17(5):250–9.
Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 1998;10(9):1571–80.
Magalhães DM, Borges M, Laumann RA, Caulfield JC, Birkett MA, Blassioli-Moraes MC. Inefficient weapon-the role of plant secondary metabolites in cotton defence against the boll weevil. Planta. 2020;252(5):94.
Prajapati VK, Vijayan V, Vadassery J. Secret weapon of insects: the oral secretion cocktail and its modulation of host immunity. Plant Cell Physiol. 2024;65(8):1213–23.
Jin S, Ren Q, Lian L, Cai X, Bian L, Luo Z, et al. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca Onukii (Matsuda) damage. Planta. 2020;252(1):10.
Luo Q, Duan F, Song W. Transcriptomics integrated with metabolomics reveals the defense response of insect-resistant Zea mays infested with Spodoptera exigua. Heliyon. 2025;11(4):e42565.
Tronchet M, Balagué C, Kroj T, Jouanin L, Roby D. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol. 2010;11(1):83–92.
Materska M, Pabich M, Sachadyn-Król M, Konarska A, Weryszko-Chmielewska E, Chilczuk B, et al. The secondary metabolites profile in horse chestnut leaves infested with horse-chestnut leaf miner. Molecules. 2022;27(17):5471.
Nakata R, Kimura Y, Aoki K, Yoshinaga N, Teraishi M, Okumoto Y, Huffaker A, Schmelz EA, Mori N. Inducible de Novo biosynthesis of isoflavonoids in soybean leaves by Spodoptera Litura derived elicitors: tracer techniques aided by high resolution LCMS. J Chem Ecol. 2016;42(12):1226–36.
Kundu P, Shinde S, Grover S, Sattler SE, Louis J. Caffeic acid O-methyltransferase-dependent flavonoid defenses promote sorghum resistance to fall armyworm infestation. Plant Physiol. 2025;197(3):kiaf071.
Njaci I, Ngugi-Dawit A, Oduor RO, Kago L, Williams B, Hoang LTM, Mundree SG, Ghimire SR. Comparative analysis delineates the transcriptional resistance mechanisms for pod borer resistance in the Pigeonpea wild relative Cajanus scarabaeoides (L.) Thouars. Int J Mol Sci. 2020;22(1):309.
Celedon JM, Whitehill JGA, Madilao LL, Bohlmann J. Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system. Sci Rep. 2020;10(1):12464.
Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-derived terpenoids: a plethora of bioactive compounds with several health functions and industrial applications-a comprehensive overview. Molecules. 2024;29(16):3861.
Wu Z, Wei W, Cheng K, Zheng L, Ma C, Wang Y. Insecticidal activity of triterpenoids and volatile oil from the stems of Tetraena mongolica. Pestic Biochem Physiol. 2020;166:104551.
Halitschke R, Keßler A, Kahl J, Lorenz A, Baldwin IT. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia. 2000;124(3):408–17.
Zhao D, Qin LJ, Zhao DG. RNA interference of the nicotine demethylase gene CYP82E4v1 reduces nornicotine content and enhances Myzus persicae resistance in Nicotiana tabacum L. Plant Physiol Biochem. 2016;107:214–21.
Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT. Nicotine’s defensive function in nature. PLoS Biol. 2004;2(8):E217.
Xu S, Brockmöller T, Navarro-Quezada A, Kuhl H, Gase K, Ling Z, et al. Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proc Natl Acad Sci U S A. 2017;114(23):6133–8.
Pang S, Zhai J, Song J, Rong D, Hong Y, Qiu Y, et al. bHLH19 and bHLH20 repress jasmonate-mediated plant defense against insect herbivores in Arabidopsis. Plant J. 2024;120(6):2623–38.
Guo Q, Major IT, Kapali G, Howe GA. MYC transcription factors coordinate tryptophan-dependent defence responses and compromise seed yield in Arabidopsis. New Phytol. 2022;236(1):132–45.
Xu Z, Li C, Wang X, Lv Z, Li W, Chen W. Transcription factor AabHLH5 participates in JA signaling and negatively regulates artemisinin biosynthesis in Artemisia annua. Physiol Plant. 2025;177(2):e70207.
Lawrence SD, Novak NG. Over-expression of StZFP2 in Solanum tuberosum L. var. Kennebec (potato) inhibits growth of Tobacco Hornworm larvae (THW, Manduca sexta L.). Plant Signal Behav. 2018;13(7):e1489668.
Zhai Y, Li P, Mei Y, Chen M, Chen X, Xu H, Zhou X, Dong H, Zhang C, Jiang W. Three MYB genes co-regulate the phloem-based defence against english grain aphid in wheat. J Exp Bot. 2017;68(15):4153–69.
Ahmed J, Mercx S, Boutry M, Chaumont F. Evolutionary and predictive functional insights into the aquaporin gene family in the allotetraploid plant Nicotiana tabacum. Int J Mol Sci. 2020;21(13):4743.
Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, et al. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol. 2013;14(6):R60.
Lim KY, Matyasek R, Kovarik A, Leitch AR. Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc. 2015;82(4):599–606.
Guayazán-Palacios N, Steinbrenner AD. Plant cell surface receptors at the forefront of the growth-defense trade-off. Dev Cell. 2025;60(4):491–2.
Liu X, Yin Z, Wang Y, Cao S, Yao W, Liu J, et al. Rice cellulose synthase-like protein OsCSLD4 coordinates the trade-off between plant growth and defense. Front Plant Sci. 2022;13:980424.
Guo Q, Yoshida Y, Major IT, Wang K, Sugimoto K, Kapali G, Havko NE, Benning C, Howe GA. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc Natl Acad Sci U S A. 2018;115(45):E10768–77.
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature. 2007;448(7154):661–5.
Wang H, Wang X, Yu C, Wang C, Jin Y, Zhang H. MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in Poplar. BMC Plant Biol. 2020;20(1):173.
Wager A, Browse J. Social network: JAZ protein interactions expand our knowledge of jasmonate signaling. Front Plant Sci. 2012;3:41.