Convention on Biological Diversity. Decision 15/28: biodiversity and agriculture. CBD https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-28-en.pdf (2022).
FAO, ITPS, GSBI, SCBD & EC. State of Knowledge of Soil Biodiversity – Status, Challenges and Potentialities. Summary for Policy Makers (FAO, 2020).
Guerra, C. A. et al. Foundations for a national assessment of soil biodiversity. J. Sustain. Agric. Environ. 3, e12116 (2024).
Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).
Anthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).
Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).
Timmis, K. et al. The contribution of microbial biotechnology to Sustainable Development Goals. Microb. Biotechnol. 10, 984–987 (2017).
United Nations Framework Convention on Climate Change. The Paris Agreement. UNFCCC https://unfccc.int/process-and-meetings/the-paris-agreement (2018).
Food and Agriculture Organization of the United Nations. Global Soil Partnership, Action Framework 2022–2030: healthy soils for a healthy life and environment: from promotion to consolidation of sustainable soil management. FAO https://www.fao.org/fileadmin/user_upload/GSP/tenth_PA/GSP_Action_Framework_FINAL.pdf (2025).
Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).
Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).
Crowther, T. W. et al. Microbes, planetary health, and the Sustainable Development Goals. Cell 187, 5195–5216 (2024).
Singh, B. K. et al. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21, 640–656 (2023).
Singh, B. K., Yan, Z. Z., Whittaker, M., Vargas, R. & Abdelfattah, A. Soil microbiomes must be explicitly included in one health policy. Nat. Microbiol. 8, 1367–1372 (2023).
Samaddar, S. et al. Role of soil in the regulation of human and plant pathogens: soils’ contributions to people. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20200179 (2021).
WWF-UK. Living Planet Report 2022. WWF https://www.wwf.org.uk/our-reports/living-planet-report-2022 (2022).
Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the anthropocene. Curr. Biol. 29, R1036–R1044 (2019).
Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22, 68–102 (2015).
Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6, 8862 (2015).
Gillespie, A. Conservation, Biodiversity and International Law (Edward Elgar, 2013).
Junker, R. R. & Farwig, N. Microbes as conservation targets. Preprint at https://ecoevorxiv.org/repository/view/8188/ (2024).
IUCN. The IUCN Red List of threatened species. Version 2024-3. IUCN Red List https://www.iucnredlist.org (2024).
Redford, K. H., Segre, J. A., Salafsky, N., Martinez del Rio, C. & McAloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).
Guerra, C. A. et al. Global hotspots for soil nature conservation. Nature 610, 693–698 (2022).
Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7, 1717–1725 (2022).
Convention on Biological Diversity. Review of the International Initiative for the Conservation and Sustainable Use of Soil Biodiversity and Updated Plan of Action 2020–2030. CBD https://www.cbd.int/doc/c/b782/c3cd/f1a6c03975a063a95ef6ff5b/sbstta-24-l-07-rev1-en.pdf (2022).
Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).
Egidi, E. et al. A few ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).
van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).
Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).
Sutherland, W. J. et al. A horizon scan of biological conservation issues for 2025. Trends Ecol. Evol. 40, 80–89 (2025).
Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).
Van Nuland, M. E. et al. Global hotspots of mycorrhizal fungal richness are poorly protected. Nature 645, 414–422 (2025).
Zeiss, R. et al. Challenges of and opportunities for protecting European soil biodiversity. Conserv. Biol. 36, e13930 (2022).
Food and Agriculture Organization of the United Nations. Soil biodiversity initiatives. FAO https://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/soil-biodiversity/initiatives/en (2025).
Parnell, J. J. et al. Combining science and policy for a unified Global Soil Biodiversity Observatory. Nat. Ecol. Evol. 9, 1302–1306 (2025).
Fortuna, A. The soil biota. Nat. Educ. Knowl. 3, 1 (2012).
Yang, Y. Emerging patterns of microbial functional traits. Trends Microbiol. 29, 874–882 (2021).
Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020).
Fungi Foundation. Fungi Foundation calls on CITES to strengthen controls over trade in fungi to reinforce fungal conservation. Fungi Foundation https://www.ffungi.org/blog/fungi-foundation-calls-on-cites-to-strengthen-controls-over-trade-in-fungi-to-reinforce-fungal-conservation (2025).
GEO BON. Soil BON. GEO BON https://geobon.org/bons/thematic-bon/soil-bon/ (2014).
Earthworm Society of Britain. Official website. Earthworm Soc https://www.earthwormsoc.org.uk (2024).
Gilbert, J. A. et al. Launching the IUCN Microbial Conservation Specialist Group as a global safeguard for microbial biodiversity. Nat. Microbiol. 10, 2359–2360 (2025).
Food and Agriculture Organization of the United Nations. How to manage soil biodiversity. FAO https://www.fao.org/agriculture/crops/thematic-sitemap/theme/spi/scpi-home/managing-ecosystems/soil-biodiversity/soil-how/en/ (2025).
Gibson, B. & Eyre-Walker, A. Investigating evolutionary rate variation in bacteria. J. Mol. Evol. 87, 317–326 (2019).
Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).
European Union. Thematic strategy for soil protection. EUR-Lex https://eur-lex.europa.eu/EN/legal-content/summary/thematic-strategy-for-soil-protection.html (2011).
European Commission. EU Soil Strategy for 2030: reaping the benefits of healthy soils for people, food, nature and climate. EUR-Lex https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0699 (2021).
Department of Agriculture, Fisheries and Forestry. National Soil Action Plan 2023 to 2028. Agriculture.gov https://www.agriculture.gov.au/agriculture-land/farm-food-drought/natural-resources/soils/national-soil-action-plan (2023).
Orgiazzi, A., Bardgett, R. D. & Barrios, E. Global Soil Biodiversity Atlas (European Commission, 2016).
Colella, J. P. et al. Engaging with the Nagoya Protocol on access and benefit-sharing: recommendations for noncommercial biodiversity researchers. J. Mammal. 104, 430–443 (2023).
Overmann, J. & Scholz, A. H. Microbiological research under the Nagoya Protocol: facts and fiction. Trends Microbiol. 25, 85–88 (2017).
Deplazes-Zemp, A. et al. The Nagoya Protocol could backfire on the Global South. Nat. Ecol. Evol. 2, 917–919 (2018).
Global Initiative of Sustainable Agriculture and Environment. Official website. Global Sustainable Agriculture https://www.globalsustainableagriculture.org (2025).
Bergström, A. Improving data archiving practices in ancient genomics. Sci. Data 11, 754 (2024).
Wild, S. Quest to map Africa’s soil microbiome begins. Nature 539, 152 (2016).
Hou, D., Bolan, N. S., Tsang, D. C. W., Kirkham, M. B. & O’Connor, D. Sustainable soil use and management: an interdisciplinary and systematic approach. Sci. Total. Environ. 729, 138961 (2020).
Cafa, G. et al. Cryopreservation of a soil microbiome using a Stirling 1 cycle approach — a genomic assessment. Preprint at agriRxiv https://doi.org/10.31220/agriRxiv.2021.00066 (2021).
Hernández, D. L., Antia, A. & McKone, M. J. The ecosystem impacts of dominant species exclusion in a prairie restoration. Ecol. Appl. 32, e2592 (2022).
Hou, G. et al. Dominant species play a leading role in shaping community stability in the northern Tibetan grasslands. J. Plant. Ecol. 16, rtac110 (2023).
Berlinches de Gea, A., Hautier, Y. & Geisen, S. Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning. Glob. Change Biol. 29, 296–307 (2023).
Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).
Karam-Gemael, M., Decker, P., Stoev, P., Marques, M. I. & Chagas, A. Jr. Conservation of terrestrial invertebrates: a review of IUCN and regional Red Lists for Myriapoda. ZooKeys 930, 221–229 (2020).
Interventions in conservation. Nat. Plants 11, 1–2 (2025).
Duarte, A. C. et al. Effects of protected areas on soil nematode communities in forests of the north of Portugal. Biodivers. Conserv. 33, 73–89 (2024).
Bolhuis, H. & Grego, M. Cryopreservation and recovery of a complex hypersaline microbial mat community. Cryobiology 114, 104859 (2024).
Choi, Y. D. Restoration ecology to the future: a call for new paradigm. Restor. Ecol. 15, 351–353 (2007).
Russell, D. J. Quality review enhances the benefits of data publication for soil biodiversity conservation. Appl. Soil. Ecol. 206, 105893 (2025).
Singh, B. K. et al. Enhancing science–policy interfaces for food systems transformation. Nat. Food 2, 838–842 (2021).
Amin, A. Exploring the role of economic incentives and spillover effects in biodiversity conservation policies in sub-Saharan Africa. Ecol. Econ. 127, 185–191 (2016).
Cai, L. et al. Global models and predictions of plant diversity based on advanced machine learning techniques. N. Phytol 237, 1432–1445 (2023).
Delgado-Baquerizo, M. et al. Ecological drivers of soil microbial diversity and soil biological networks in the southern hemisphere. Ecology 99, 583–596 (2018).
Delgado-Baquerizo, M. et al. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. N. Phytol. 219, 574–587 (2018).
Pugnaire, F. I. et al. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 5, eaaz1834 (2019).
Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).
Rillig, M. C. et al. Increasing the number of stressors reduces soil ecosystem services worldwide. Nat. Clim. Change 13, 478–483 (2023).
Tang, X. et al. Multiple environmental stressors interactively affect soil phosphorus cycling microbiomes. Commun. Earth Environ. 6, 757 (2025).
Lindo, Z. et al. The threat-work: a network of potential threats to soil biodiversity. Soil. Org. 97, 31–46 (2025).