Burmeister, E. F. et al. Photonic integrated circuit optical buffer for packet-switched networks. Opt. Express 17, 6629–6635 (2009).

Article 
ADS 
PubMed 

Google Scholar
 

Bauters, J. F. et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 19, 24090–24101 (2011).

Article 
ADS 
PubMed 

Google Scholar
 

Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

Article 
ADS 

Google Scholar
 

Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator. Nature 627, 534–539 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

Article 
ADS 
PubMed 

Google Scholar
 

Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Nature 627, 80–87 (2024).

Article 
ADS 
PubMed 

Google Scholar
 

Chauhan, N. et al. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics. Opt. Express 30, 6960–6969 (2022).

Article 
ADS 
PubMed 

Google Scholar
 

Corato-Zanarella, M., Ji, X., Mohanty, A. & Lipson, M. Absorption and scattering limits of silicon nitride integrated photonics in the visible spectrum. Opt. Express 32, 5718–5728 (2024).

Article 
ADS 
PubMed 

Google Scholar
 

Bose, D. et al. Anneal-free ultra-low loss silicon nitride integrated photonics. Light Sci. Appl. 13, 156 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).

Article 
ADS 

Google Scholar
 

Lai, Y.-H. et al. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photon. 14, 345–349 (2020).

Article 
ADS 

Google Scholar
 

Lu, X. et al. Emerging integrated laser technologies in the visible and short near-infrared regimes. Nat. Photon. 18, 1010–1023 (2024).

Article 
ADS 

Google Scholar
 

Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Pedersen, A. T., Grüner-Nielsen, L. & Rottwitt, K. Measurement and modeling of low-wavelength losses in silica fibers and their impact at communication wavelengths. J. Lightwave Technol. 27, 1296–1300 (2009).

Article 
ADS 

Google Scholar
 

Armani, D., Kippenberg, T., Spillane, S. & Vahala, K. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

Article 
ADS 
PubMed 

Google Scholar
 

Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

Article 
ADS 

Google Scholar
 

Himeno, A., Kato, K. & Miya, T. Silica-based planar lightwave circuits. IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).

Article 
ADS 

Google Scholar
 

Birtch, E. M., Shelby, J. E. & Marc Whalen, J. Properties of binary GeO2-SiO2 glasses. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 182–185 (2006).


Google Scholar
 

Kao, C. K. Nobel lecture: Sand from centuries past: Send future voices fast. Rev. Mod. Phys. 82, 2299–2303 (2010).

Article 
ADS 

Google Scholar
 

Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).

Article 
ADS 
PubMed 

Google Scholar
 

Dong, C-H. et al. Coupling of light from an optical fiber taper into silver nanowires. Appl. Phys. Lett. 95, 221109 (2009).

Article 
ADS 

Google Scholar
 

Mitchell, W. J., Thibeault, B. J., John, D. D. & Reynolds, T. E. Highly selective and vertical etch of silicon dioxide using ruthenium films as an etch mask. J. Vac. Sci. Technol. A 39, 043204 (2021).

Article 

Google Scholar
 

Yuan, Z. et al. Soliton pulse pairs at multiple colours in normal dispersion microresonators. Nat. Photon. 17, 977–983 (2023).

Article 
ADS 

Google Scholar
 

Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Otterstrom, N. T., Behunin, R. O., Kittlaus, E. A., Wang, Z. & Rakich, P. T. A silicon Brillouin laser. Science 360, 1113–1116 (2018).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Eggleton, B. J., Steel, M. J. & Poulton, C. G.Brillouin Scattering Part 2, 1st edn, Vol. 110 (Academic Press, 2022).

Lu, Z. et al. Synthesized soliton crystals. Nat. Commun. 12, 3179 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Siddharth, A. et al. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photon. 7, 046108 (2022).

Article 
ADS 

Google Scholar
 

Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).

Article 
ADS 

Google Scholar
 

Hill, K. O., Fujii, Y., Johnson, D. C. & Kawasaki, B. S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 32, 647–649 (1978).

Article 
ADS 

Google Scholar
 

Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

Article 
ADS 
PubMed 

Google Scholar
 

Carmon, T. & K, V. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat. Phys. 3, 430–435 (2007).

Article 

Google Scholar
 

Chen, H.-J. et al. Chaos-assisted two-octave-spanning microcombs. Nat. Commun. 11, 2336 (2020).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Morin, T. J. et al. CMOS-foundry-based blue and violet photonics. Optica 8, 755–756 (2021).

Article 
ADS 

Google Scholar
 

Isichenko, A. et al. Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser. Sci. Rep. 14, 27015 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, P. et al. Near-visible integrated soliton microcombs with detectable repetition rates. Nat. Commun. 16, 4780 (2025).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Lu, X. et al. Milliwatt-threshold visible–telecom optical parametric oscillation using silicon nanophotonics. Optica 6, 1535–1541 (2019).

Article 
ADS 

Google Scholar
 

Karpov, M., Pfeiffer, M. H. P., Liu, J., Lukashchuk, A. & Kippenberg, T. J. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun. 9, 1146 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380–384 (2019).

Article 
ADS 

Google Scholar
 

Renaud, D. et al. Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 14, 1496 (2023).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Sund, P. I. et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Sci. Adv. 9, eadg7268 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xie, Y. et al. Soliton frequency comb generation in CMOS-compatible silicon nitride microresonators. Photon. Res. 10, 1290–1296 (2022).

Article 

Google Scholar
 

Chiles, J. et al. Deuterated silicon nitride photonic devices for broadband optical frequency comb generation. Opt. Lett. 43, 1527–1530 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Ji, X. et al. Ultra-low-loss silicon nitride photonics based on deposited films compatible with foundries. Laser Photon. Rev. 17, 2200544 (2023).

Article 
ADS 

Google Scholar
 

Chia, X. X. et al. Low-power four-wave mixing in deuterated silicon-rich nitride ring resonators. J. Lightwave Technol. 41, 3115–3130 (2023).

Article 
ADS 

Google Scholar
 

Frigg, A. et al. Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films. Opt. Express 27, 37795–37805 (2019).

Article 
ADS 
PubMed 

Google Scholar
 

Zhang, S. et al. Low-temperature sputtered ultralow-loss silicon nitride for hybrid photonic integration. Laser Photon. Rev. 18, 2300642 (2024).

Article 
ADS 

Google Scholar
 

Golshani, N. et al. Low-loss, low-temperature PVD SiN waveguides. In Proc. IEEE 17th Int. Conf. Group IV Photonics (GFP), 1–2 (IEEE, 2021).

Guo, J. et al. Investigation of Q degradation in low-loss Si3N4 from heterogeneous laser integration. Opt. Lett. 49, 4613–4616 (2024).

Article 
ADS 
PubMed 

Google Scholar
 

Liu, K. et al. Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380 μW threshold Brillouin lasing. Opt. Lett. 47, 1855–1858 (2022).

Article 
ADS 
PubMed 

Google Scholar
 

Botter, R. et al. Guided-acoustic stimulated brillouin scattering in silicon nitride photonic circuits. Sci. Adv. 8, eabq2196 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Qiu, W. et al. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. Opt. Express 21, 31402–31419 (2013).

Article 
ADS 
PubMed 

Google Scholar
 

Kondratiev, N. M. & Gorodetsky, M. Thermorefractive noise in whispering gallery mode microresonators: analytical results and numerical simulation. Phys. Lett. A 382, 2265–2268 (2018).

Article 
ADS 

Google Scholar
 

Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).

Article 
ADS 

Google Scholar
 

Chen, H.-J., Colburn, K. et al. Data for “Towards fibre-like-loss for photonic integration from violet to near-IR”. Zenodo https://doi.org/10.5281/zenodo.17478213 (2025).