Tucker, M. A. & Rogers, T. L. Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals. Proc. R. Soc. B: Biol. Sci. 281, 20142103 (2014).
Reum, J. C., Blanchard, J. L., Holsman, K. K., Aydin, K. & Punt, A. E. Species-specific ontogenetic diet shifts attenuate trophic cascades and lengthen food chains in exploited ecosystems. Oikos 128, 1051–1064 (2019).
Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl. Acad. Sci. 105, 4191–4196 (2008).
Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).
Heneghan, R. F., Hatton, I. A. & Galbraith, E. D. Climate change impacts on marine ecosystems through the lens of the size spectrum. Emerg. Top. Life Sci. 3, 233–243 (2019).
Lindeman, R. L. The trophic-dynamic aspect of ecology. Bull. Math. Biol. 53, 167–191 (1991).
Ducrotoy, J.-P., Elliott, M. & de Jonge, V. N. The North Sea. Mar. Pollut. Bull. 41, 5–23 (2000).
Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Philos. Trans. R. Soc. B: Biol. Sci. 365, 2081–2091 (2010).
Schneider, F. D., Scheu, S. & Brose, U. Body mass constraints on feeding rates determine the consequences of predator loss. Ecol. Lett. 15, 436–443 (2012).
Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).
Levin, S. A. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1, 431–436 (1998).
Fath, B. D., Scharler, U. M., Ulanowicz, R. E. & Hannon, B. Ecological network analysis: network construction. Ecol. Model. 208, 49–55 (2007).
Hunsicker, M. E. et al. Functional responses and scaling in predator–prey interactions of marine fishes: contemporary issues and emerging concepts. Ecol. Lett. 14, 1288–1299 (2011).
Goerner, S., Fiscus, D. & Fath, B. Using energy network science (ENS) to connect resilience with the larger story of systemic health and development. Émerg.: Complex. Organ. 17, 1–21 (2015).
O’Gorman, E. J. et al. A simple model predicts how warming simplifies wild food webs. Nat. Clim. Change 9, 611–616 (2019).
Kortsch, S. et al. Food-web structure varies along environmental gradients in a high-latitude marine ecosystem. Ecography 42, 295–308 (2019).
IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2022).
Nakazawa, T., Ushio, M. & Kondoh, M. In Advances in Ecological Research. 45, 269-302 (Elsevier, 2011).
Link, J. S. & Watson, R. A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv. 5, eaav0474 (2019).
Frelat, R. et al. Food web structure and community composition: a comparison across space and time in the North Sea. Ecography 2022, 5945 (2022).
Flanagan, P. H., Jensen, O. P., Morley, J. W. & Pinsky, M. L. Response of marine communities to local temperature changes. Ecography 42, 214–224 (2019).
Pecuchet, L. et al. Novel feeding interactions amplify the impact of species redistribution on an Arctic food web. Glob. Change Biol. 26, 4894–4906 (2020).
Gulev, S. K. et al. Changing state of the climate system. https://doi.org/10.1017/9781009157896.004 (2021).
Baum, J. K. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009).
Boyce, D. G., Frank, K. T., Worm, B. & Leggett, W. C. Spatial patterns and predictors of trophic control in marine ecosystems. Ecol. Lett. 18, 1001–1011 (2015).
Lynam, C. P. et al. Interaction between top-down and bottom-up control in marine food webs. Proc. Natl. Acad. Sci. 114, 1952–1957 (2017).
Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. 106, 12788–12793 (2009).
Cheung, W. W. et al. Shrinking of fish exacerbates the impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 254–258 (2013).
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. change 1, 401–406 (2011).
Coghlan, A. R. et al. Mean reef fish body size decreases towards warmer waters. Ecol. Lett. 27, e14375 (2024).
Capuzzo, E. et al. A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Glob. change Biol. 24, e352–e364 (2018).
Howarth, L. M. et al. Effects of bottom trawling and primary production on the composition of biological traits in benthic assemblages. Mar. Ecol. Prog. Ser. 602, 31–48 (2018).
Pauly, D. & Palomares, M.-L. Fishing down the marine food web: it is far more pervasive than we thought. Bull. Mar. Sci. 76, 197–212 (2005).
Hsieh, C. -h, Yamauchi, A., Nakazawa, T. & Wang, W.-F. Fishing effects on age and spatial structures undermine population stability of fishes. Aquat. Sci. 72, 165–178 (2010).
Berkeley, S. A., Hixon, M. A., Larson, R. J. & Love, M. S. Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29, 23–32 (2004).
Báez, J. C., Gimeno, L. & Real, R. North Atlantic Oscillation and fisheries management during global climate change. Rev. Fish. Biol. Fish. 31, 319–336 (2021).
Kirby, R. R., Beaugrand, G. & Lindley, J. A. Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 12, 548–561 (2009).
Perkins, D. M. et al. Consistent predator-prey biomass scaling in complex food webs. Nat. Commun. 13, 4990 (2022).
Gauzens, B. et al. fluxweb: An R package to easily estimate energy fluxes in food webs. Methods Ecol. Evol. 10, 270–279 (2019).
Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).
Thompson, M. S., Couce, E., Schratzberger, M. & Lynam, C. P. Climate change affects the distribution of diversity across marine food webs. Glob. Change Biol. 29, 6606–6619 (2023).
Riede, J. O. et al. Stepping in Elton’s footprints: a general scaling model for body masses and trophic levels across ecosystems. Ecol. Lett. 14, 169–178 (2011).
Thompson, M. S. et al. Fish functional groups of the North Atlantic and Arctic Oceans. Earth Syst. Sci. Data Discuss. 2024, 1–29 (2024).
Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007).
Barnes, C., Maxwell, D., Reuman, D. C. & Jennings, S. Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91, 222–232 (2010).
Jennings, S. & Warr, K. J. Smaller predator-prey body size ratios in longer food chains. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 270, 1413–1417 (2003).
Pauly, D. Gasping Fish and Panting Squids: Oxygen, Temperature and the Growth of Water-breathing Animals. (International Ecology Institute, 2019).
Forster, J. & Hirst, A. G. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct. Ecol. 26, 483–492 (2012).
Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Tara Marshall, C. Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes. Glob. change Biol. 20, 1023–1031 (2014).
Kuparinen, A. et al. Fish age at maturation is influenced by temperature independently of growth. Oecologia 167, 435–443 (2011).
Neuheimer, A. B. & Grønkjær, P. Climate effects on size-at-age: growth in warming waters compensates for earlier maturity in an exploited marine fish. Glob. Change Biol. 18, 1812–1822 (2012).
Wootton, H. F., Morrongiello, J. R., Schmitt, T. & Audzijonyte, A. Smaller adult fish size in warmer water is not explained by elevated metabolism. Ecol. Lett. 25, 1177–1188 (2022).
Goldenberg, J., Bisschop, K., D’Alba, L. & Shawkey, M. D. The link between body size, colouration and thermoregulation and their integration into ecogeographical rules: a critical appraisal in light of climate change. Oikos 2022, e09152 (2022).
Tirsgaard, B., Behrens, J. W. & Steffensen, J. F. The effect of temperature and body size on metabolic scope of activity in juvenile Atlantic cod Gadus morhua L. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 179, 89–94 (2015).
Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. science 308, 1912–1915 (2005).
Harley, C. D. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).
Cheung, W. W. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish. Fish. 10, 235–251 (2009).
Fernandes, J. A. et al. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Glob. change Biol. 19, 2596–2607 (2013).
Reum, J. C., Holsman, K. K., Aydin, K. Y., Blanchard, J. L. & Jennings, S. Energetically relevant predator–prey body mass ratios and their relationship with predator body size. Ecol. evolution 9, 201–211 (2019).
Ortiz, E., Ramos-Jiliberto, R. & Arim, M. Prey selection along a predator’s body size gradient evidences the role of different trait-based mechanisms in food web organization. Plos one 18, e0292374 (2023).
Blanchard, J. L. et al. Do climate and fishing influence size-based indicators of the Celtic Sea fish community structure? ICES J. Mar. Sci. 62, 405–411 (2005).
Agnetta, D. et al. Erosion of fish trophic position: an indirect effect of fishing on food webs elucidated by stable isotopes. Philos. Trans. R. Soc. B: Biol. Sci. 379, 20230167 (2024).
Genner, M. J. et al. Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Glob. Change Biol. 16, 517–527 (2010).
Preciado, I. et al. Small-scale spatial variations of trawling impact on food web structure. Ecol. Indic. 98, 442–452 (2019).
Wood, M. V., Carvalho, F. M. & Castello, L. Fishing shrinks the size structure of exploited coral reef fishes in Brazil. Fish. Res. 275, 107029 (2024).
Olafsdottir, A. H. et al. Changes in weight-at-length and size-at-age of mature Northeast Atlantic mackerel (Scomber scombrus) from 1984 to 2013: effects of mackerel stock size and herring (Clupea harengus) stock size. ICES J. Mar. Sci. 73, 1255–1265 (2016).
Shackell, N. L., Frank, K. T., Fisher, J. A., Petrie, B. & Leggett, W. C. Decline in top predator body size and changing climate alter trophic structure in an oceanic ecosystem. Proc. R. Soc. B: Biol. Sci. 277, 1353–1360 (2010).
Mollet, F. M., Poos, J. J., Dieckmann, U. & Rijnsdorp, A. D. Evolutionary impact assessment of the North Sea plaice fishery. Can. J. Fish. Aquat. Sci. 73, 1126–1137 (2016).
Jennings, S., Pinnegar, J. K., Polunin, N. V. & Warr, K. J. Linking size-based and trophic analyses of benthic community structure. Mar. Ecol. Prog. Ser. 226, 77–85 (2002).
Liang, C. & Pauly, D. Fisheries impacts on China’s coastal ecosystems: unmasking a pervasive ‘fishing down’effect. PLoS One 12, e0173296 (2017).
Jennings, S. & Kaiser, M. J. In Advances in Marine Biology. 34, 201–352 (Elsevier, 1998).
Halpern, B. S. et al. A global map of human impact on marine ecosystems. science 319, 948–952 (2008).
McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).
Bondavalli, C. & Bodini, A. How interaction strength affects the role of functional and redundant connections in food webs. Ecol. Complex. 20, 97–106 (2014).
Van Baalen, M., Křivan, V., van Rijn, P. C. & Sabelis, M. W. Alternative food, switching predators, and the persistence of predator-prey systems. Am. Nat. 157, 512–524 (2001).
Albouy, C. et al. From projected species distribution to food-web structure under climate change. Glob. change Biol. 20, 730–741 (2014).
Coghlan, A. R. et al. Community size structure varies with predator–prey size relationships and temperature across Australian reefs. Ecol. Evol. 12, e8789 (2022).
Pinnegar, J. K. (ed). Fisheries & Aquaculture Science Centre for Environment. (2019).
Good, S. et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 12, 720 (2020).
Donlon, C. J. et al. 2012, The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sensing of the Environment. https://doi.org/10.1016/j.rse.2010.10.017 (2011).
Stark J. D., Donlon C. J., Martin M. J. & McCulloch M. E., OSTIA: an operational, high resolution, real-time, global sea surface temperature analysis system., Oceans 07 IEEE Aberdeen, conference proceedings. Marine challenges: coastline to deep sea. (Aberdeen, Scotland. IEEE, 2007).
Zanzi, A.; Holmes, S. Fisheries data from DCF Fishing Effort Regimes data calls. European Commission, Joint Research Centre (JRC). PID: http://data.europa.eu/89h/9f8002cc-c6fc-4adb-86cd-466f935a7bda (2017).
Forsyth, P. J. & Kay, J. A. The economic implications of North Sea oil revenues. Fisc. Stud. 1, 1–28 (1980).
Engelhard, G. H. et al. Forage fish, their fisheries, and their predators: who drives whom? ICES J. Mar. Sci. 71, 90–104 (2014).
Rutterford, L. A., Genner, M. J., Engelhard, G. H., Simpson, S. D. & Hunter, E. Fishing impacts on age structure may conceal environmental drivers of body size in exploited fish populations. ICES J. Mar. Sci. 80, 848–860 (2023).
ICES. (ed). International Council for the Exploration of the Sea. (1997).
A language and environment for statistical computing. R Foundation for Statistical Computing (2017).
Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. Maps: Draw Geographical Maps. R package version 3.4.2. https://doi.org/10.32614/CRAN.package.maps (2023).