Miessen, A., Ollitrault, P. J., Tacchino, F. & Tavernelli, I. Quantum algorithms for quantum dynamics. Nat. Comput. Sci. 3, 25–37 (2023).

Article 

Google Scholar
 

Fisher, M. P. A., Khemani, V., Nahum, A. & Vijay, S. Random quantum circuits. Annu. Rev. Condens. Matter Phys. 14, 335–379 (2023).

Article 
ADS 

Google Scholar
 

Hangleiter, D. & Eisert, J. Computational advantage of quantum random sampling. Rev. Modern Phys. 95, 035001 (2023).

Article 
ADS 
MathSciNet 

Google Scholar
 

Li, Y., Chen, X. & Fisher, M. P. A. Quantum zeno effect and the many-body entanglement transition. Phys. Rev. B 98, 205136 (2018).

Article 
ADS 

Google Scholar
 

Skinner, B., Ruhman, J. & Nahum, A. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X 9, 031009 (2019).


Google Scholar
 

Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

Article 
ADS 

Google Scholar
 

Sünderhauf, C., Pérez-García, D., Huse, D. A., Schuch, N. & Cirac, J. I. Localization with random time-periodic quantum circuits. Phys. Rev. B 98, 134204 (2018).

Article 
ADS 

Google Scholar
 

Garratt, S. J. & Chalker, J. T. Many-body delocalization as symmetry breaking. Phys. Rev. Lett. 127, 026802 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Morningstar, A., Colmenarez, L., Khemani, V., Luitz, D. J. & Huse, D. A. Avalanches and many-body resonances in many-body localized systems. Phys. Rev. B 105, 174205 (2022).

Article 
ADS 

Google Scholar
 

Vanicat, M., Zadnik, L. & Prosen, T. Integrable trotterization: local conservation laws and boundary driving. Phys. Rev. Lett. 121, 030606 (2018).

Article 
ADS 

Google Scholar
 

Chan, A., De Luca, A. & Chalker, J. T. Solution of a minimal model for many-body quantum chaos. Phys. Rev. X 8, 041019 (2018).


Google Scholar
 

Bertini, B., Kos, P. & Prosen, T. Exact spectral form factor in a minimal model of many-body quantum chaos. Phys. Rev. Lett. 121, 264101 (2018).

Article 
ADS 

Google Scholar
 

Bertini, B., Kos, P. & Prosen, T. Random matrix spectral form factor of dual-unitary quantum circuits. Commun. Math. Phys. 387, 597–620 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Bertini, B., Kos, P. & Prosen, T. Exact correlation functions for dual-unitary lattice models in 1 + 1 dimensions. Phys. Rev. Lett. 123, 210601 (2019).

Article 
ADS 
MathSciNet 

Google Scholar
 

Gopalakrishnan, S. & Lamacraft, A. Unitary circuits of finite depth and infinite width from quantum channels. Phys. Rev. B 100, 064309 (2019).

Article 
ADS 

Google Scholar
 

Piroli, L., Bertini, B., Cirac, J. I. & Prosen, T. Exact dynamics in dual-unitary quantum circuits. Phys. Rev. B 101, 094304 (2020).

Article 
ADS 

Google Scholar
 

Bertini, B., Kos, P. & Prosen, T. Operator entanglement in local quantum circuits I: chaotic dual-unitary circuits. SciPost Physics 8, 067 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Ippoliti, M. & Khemani, V. Postselection-free entanglement dynamics via spacetime duality. Phys. Rev. Lett. 126, 060501 (2021).

Article 
ADS 

Google Scholar
 

Suzuki, R., Mitarai, K. & Fujii, K. Computational power of one-and two-dimensional dual-unitary quantum circuits. Quantum 6, 631 (2022).

Article 

Google Scholar
 

Claeys, P. W. & Lamacraft, A. Maximum velocity quantum circuits. Phys. Rev. Res. 2, 033032 (2020).

Article 

Google Scholar
 

Bertini, B. & Piroli, L. Scrambling in random unitary circuits: exact results. Phys. Rev. B 102, 064305 (2020).

Article 
ADS 

Google Scholar
 

Chertkov, E. et al. Holographic dynamics simulations with a trapped-ion quantum computer. Nat. Phys. 18, 1074–1079 (2022).

Article 

Google Scholar
 

Bertini, B., Kos, P. & Prosen, T. Entanglement spreading in a minimal model of maximal many-body quantum chaos. Phys. Rev. X 9, 021033 (2019).


Google Scholar
 

Zhou, T. & Harrow, A. W. Maximal entanglement velocity implies dual unitarity. Phys. Rev. B 106, L201104 (2022).

Article 
ADS 

Google Scholar
 

Mi, X. et al. Information scrambling in quantum circuits. Science 374, 1479–1483 (2021).

Article 
ADS 

Google Scholar
 

Keenan, N., Robertson, N. F., Murphy, T., Zhuk, S. & Goold, J. Evidence of Kardar–Parisi–Zhang scaling on a digital quantum simulator. npj Quantum Inf. 9, 72 (2023).

Article 
ADS 

Google Scholar
 

Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

Article 
ADS 

Google Scholar
 

Robledo-Moreno, J. et al. Chemistry beyond the scale of exact diagonalization on a quantum-centric supercomputer. Sci. Adv. 11, eadu9991 (2025).

Article 
ADS 

Google Scholar
 

Shinjo, K., Seki, K., Shirakawa, T., Sun, R.-Y. & Yunoki, S. Unveiling clean two-dimensional discrete time quasicrystals on a digital quantum computer. Preprint at https://arxiv.org/abs/2403.16718 (2024).

Farrell, R. C., Illa, M., Ciavarella, A. N. & Savage, M. J. Quantum simulations of hadron dynamics in the schwinger model using 112 qubits. Phys. Rev. D 109, 114510 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Shtanko, O. et al. Uncovering local integrability in quantum many-body dynamics. Nat. Commun. 16, 2552 (2025).

Article 
ADS 

Google Scholar
 

Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

Article 
ADS 
MathSciNet 

Google Scholar
 

Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).


Google Scholar
 

Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).

Article 
ADS 

Google Scholar
 

Van Den Berg, E., Minev, Z. K., Kandala, A. & Temme, K. Probabilistic error cancellation with sparse pauli–lindblad models on noisy quantum processors. Nat. Phys. 19, 1116–1121 (2023).

Article 

Google Scholar
 

Zimborás, Z. et al. Myths around quantum computation before full fault tolerance: what no-go theorems rule out and what they don’t. Preprint at https://arxiv.org/abs/2501.05694 (2025).

Govia, L. et al. Bounding the systematic error in quantum error mitigation due to model violation. PRX Quantum 6, 010354 (2025).

Article 
ADS 

Google Scholar
 

Filippov, S., Leahy, M., Rossi, M. A. C. & García-Pérez, G. Scalable tensor-network error mitigation for near-term quantum computing. Preprint at https://arxiv.org/abs/2307.11740 (2023).

Filippov, S. N., Maniscalco, S. & García-Pérez, G. Scalability of quantum error mitigation techniques: from utility to advantage. Preprint at https://arxiv.org/abs/2403.13542 (2024).

Prosen, T. General relation between quantum ergodicity and fidelity of quantum dynamics. Phys. Rev. E 65, 036208 (2002).

Article 
ADS 
MathSciNet 

Google Scholar
 

Akila, M., Waltner, D., Gutkin, B. & Guhr, T. Particle-time duality in the kicked ising spin chain. J. Phys. A 49, 375101 (2016).

Article 
MathSciNet 

Google Scholar
 

Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16, 1050–1057 (2020).

Article 

Google Scholar
 

Glos, A. et al. Adaptive POVM implementations and measurement error mitigation strategies for near-term quantum devices. Preprint at https://arxiv.org/abs/2208.07817 (2022).

Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

Article 
ADS 

Google Scholar
 

Knill, E. Fault-tolerant postselected quantum computation: threshold analysis. Preprint at https://arxiv.org/abs/quant-ph/0404104 (2004).

Wallman, J. J. & Emerson, J. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 94, 052325 (2016).

Article 
ADS 

Google Scholar
 

Hashim, A. et al. Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor. Phys. Rev. X 11, 041039 (2021).


Google Scholar
 

Chen, S. et al. The learnability of Pauli noise. Nat. Commun. 14, 52 (2023).

Article 
ADS 

Google Scholar
 

Chen, S., Zhang, Z., Jiang, L. & Flammia, S. T. Efficient self-consistent learning of gate set Pauli noise. Preprint at https://arxiv.org/abs/2410.03906 (2024).

Kim, Y. et al. Error mitigation with stabilized noise in superconducting quantum processors. Nat. Commun. 16, 8439 (2025).

Article 
ADS 

Google Scholar
 

Ljubotina, M., Zadnik, L. & Prosen, T. Ballistic spin transport in a periodically driven integrable quantum system. Phys. Rev. Lett. 122, 150605 (2019).

Article 
ADS 

Google Scholar
 

Long, D. M., Crowley, P. J. D., Khemani, V. & Chandran, A. Phenomenology of the prethermal many-body localized regime. Phys. Rev. Lett. 131, 106301 (2023).

Article 
ADS 

Google Scholar
 

Eddins, A., Tran, M. C. & Rall, P. Lightcone shading for classically accelerated quantum error mitigation. Preprint at https://arxiv.org/abs/2409.04401 (2024).

Robertson, N. F. et al. Tensor network enhanced dynamic multiproduct formulas. PRX Quantum 6, 020360 (2025).

Article 
ADS 

Google Scholar
 

Stehlik, J. et al. Tunable coupling architecture for fixed-frequency transmon superconducting qubits. Phys. Rev. Lett. 127, 080505 (2021).

Article 
ADS 

Google Scholar
 

Wack, A. et al. Scale, quality, and speed: three key attributes to measure the performance of near-term quantum computers. Preprint at https://arxiv.org/abs/2110.14108 (2021).

Rajagopala, A. D. et al. Hardware-assisted parameterized circuit execution. Preprint at https://arxiv.org/abs/2409.03725 (2024).

Van Den Berg, E., Minev, Z. K. & Temme, K. Model-free readout-error mitigation for quantum expectation values. Phys. Rev. A 105, 032620 (2022).

Article 
ADS 
MathSciNet 

Google Scholar
 

Tsubouchi, K., Sagawa, T. & Yoshioka, N. Universal cost bound of quantum error mitigation based on quantum estimation theory. Phys. Rev. Lett. 131, 210601 (2023).

Article 
ADS 
MathSciNet 

Google Scholar
 

Data and code for: dynamical simulations of many-body quantum chaos on a quantum computer. Figshare https://doi.org/10.6084/m9.figshare.29069759 (2025).