McMichael, C., Dasgupta, S., Ayeb-Karlsson, S. & Kelman, I. A review of estimating population exposure to sea-level rise and the relevance for migration. Environ. Res. Lett. 15, 123005 (2020).
Cozannet, L. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 9 (Cambridge Univ. Press, 2021).
Haasnoot, M. et al. Adaptation to uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the coastal adaptation strategy of the Netherlands. Environ. Res. Lett. 15, 034007 (2020).
Han, W. et al. Impacts of basin-scale climate modes on coastal sea level: a review. Surv. Geophys. 40, 1493–1541 (2019).
Roberts, C. D. et al. On the drivers and predictability of seasonal-to-interannual variations in regional sea level. J. Clim. 29, 7565–7585 (2016).
Boucharel, J. et al. Contrasted influence of climate modes teleconnections to the interannual variability of coastal sea level components—implications for statistical forecasts. Clim. Dyn. 61, 4011–4032 (2023).
Meyssignac, B. et al. Causes of the regional variability in observed sea level, sea surface temperature and ocean colour over the period 1993–2011. Surv. Geophys. 38, 187–215 (2017).
Todd, A. et al. Ocean-only FAFMIP: understanding regional patterns of ocean heat content and dynamic sea level change. J. Adv. Model. Earth Syst. 12, e2019MS002027 (2020).
Kirezci, E. et al. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century. Sci. Rep. 10, 11629 (2020).
Boucharel, J., Almar, R., Kestenare, E. & Jin, F.-F. On the influence of ENSO complexity on Pan-Pacific coastal wave extremes. Proc. Natl Acad. Sci. USA 118, e2115599118 (2021).
Marcos, M. et al. Increased extreme coastal water levels due to the combined action of storm surges and wind waves. Geophys. Res. Lett. 46, 4356–4364 (2019).
Dodet, G. et al. The contribution of wind-generated waves to coastal sea-level changes. Surv. Geophys. 40, 1563–1601 (2019).
Melet, A. et al. Contribution of wave setup to projected coastal sea level changes. J. Geophys. Res. Oceans 125, e2020JC016078 (2020).
Almar, R. et al. A global analysis of extreme coastal water levels with implications for potential coastal overtopping. Nat. Commun. 12, 3775 (2021).
Melet, A. et al. Under-estimated wave contribution to coastal sea-level rise. Nat. Clim. Change 8, 234–239 (2018).
Menéndez, M. & Woodworth, P. L. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. 115, C10011 (2010).
Vitousek, S. et al. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7, 1399 (2017).
Vousdoukas, M. I. et al. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 9, 2360 (2018).
Woodworth, P. L. et al. Forcing factors affecting sea level changes at the coast. Surv. Geophys. 40, 1351–1397 (2019).
McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in earth science. Science 314, 1740–1745 (2006).
Lin, I.-I. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. et al.) Ch. 17 (American Geophysical Union, 2020).
Taschetto, A. S. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. et al.) Ch. 14 (American Geophysical Union, 2020).
Barnard, P. et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat. Geosci. 8, 801–807 (2015).
Barnard, P. et al. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nat. Commun. 8, 14365 (2017).
Boucharel, J., Almar, R. & Dewitte, B. Seasonal forecasts of the world’s coastal waterline: what to expect from the coming El Niño? npj Clim. Atmos. Sci. 7, 37 (2024).
Zhao, S., Li, N., Jin, F.-F., Cheung, K. F. & Yang, Z. Contrast and predictability of island-scale El Niño influences on Hawaii wave climate. Geophys. Res. Lett. 52, 2024GL113127 (2025).
Almar, R. et al. Influence of El Niño on the variability of global shoreline position. Nat. Commun. 14, 3133 (2023).
Mortlock, T. R. & Goodwin, I. D. Impacts of enhanced central Pacific ENSO on wave climate and headland–bay beach morphology. Cont. Shelf Res. 120, 14–25 (2016).
Odériz, I., Silva, R., Mortlock, T. R. & Mori, N. El Niño-Southern Oscillation impacts on global wave climate and potential coastal hazards. J. Geophys. Res. Oceans 125, e2020JC016464 (2020).
Kug, J. S. et al. Two types of El Niño: cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 (2009).
Yeh, S.-W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).
Jones, P. D., Jonsson, T. & Wheeler, D. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433–1450 (1997).
Hurrell, J. W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).
Chafik, L., Nilsen, J. E. Ø & Dangendorf, S. Impact of North Atlantic teleconnection patterns on northern European sea level. J. Mar. Sci. Eng. 5, 43 (2017).
Dodet, G., Bertin, X. & Taborda, R. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modell. 31, 120–131 (2010).
Almar, R., Kestenare, E. & Boucharel, J. On the key influence of the remote climate variability from Tropical Cyclones, North and South Atlantic mid-latitude storms on the Senegalese coast (West Africa). Env. Res. Comm. https://doi.org/10.1088/2515-7620/ab2ec6 (2019).
Menendez, M., Mendez, F. J. & Losada, I. J. Forecasting seasonal to interannual variability in extreme sea levels. ICES J. Mar. Sci. 66, 1490–1496 (2009).
Muis, S., Haigh, I. D., Guimarães Nobre, G., Aerts, J. C. J. H. & Ward, P. J. Influence of El Niño–Southern Oscillation on global coastal flooding. Earths Future 6, 1311–1322 (2018).
Rashid, M. M., Wahl, T. & Chambers, D. P. Extreme sea level variability dominates coastal flood risk changes at decadal time scales. Environ. Res. Lett. 16, 024026 (2021).
Marcos, M., Calafat, F. M., Berihuete, Á & Dangendorf, S. Long-term variations in global sea level extremes. J. Geophys. Res. Oceans 120, 8115–8134 (2015).
Mysak, L. A., Ingram, R. G., Wang, J. & van der Baaren, A. The anomalous sea-ice extent in Hudson Bay, Baffin Bay and the Labrador Sea during three simultaneous NAO and ENSO episodes. Atmos. Ocean 34, 313–343 (1996).
Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
Tang, X., Li, J., Zhang, Y., Li, Y. & Zhao, S. Synergistic effect of El Niño and negative phase of North Atlantic Oscillation on winter precipitation in the southeastern United States. J. Clim. 36, 1767–1791 (2023).
Liu, C. et al. Combined influence of ENSO and North Atlantic Oscillation (NAO) on Eurasian Steppe during 1982–2018. Sci. Total Environ. 892, 164735 (2023).
Zhao, S. et al. Explainable El Niño predictability from climate mode interactions. Nature 630, 891–898 (2024).
André, C., Monfort, D., Bouzit, M. & Vinchon, C. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events. Nat. Hazards Earth Syst. Sci. 13, 2003–2012 (2013).
The Christmas Flood of 1964 (USGS, 2014); https://www.usgs.gov/news/featured-story/christmas-flood-1964
Rasmusson, E. M. & Carpenter, T. H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 110, 354–384 (1982).
Larkin, N. K. & Harrison, D. E. ENSO warm (El Niño) and cold (La Niña) event life cycles: ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Clim. 15, 1118–1140 (2002).
Stein, K., Timmermann, A., Schneider, N., Jin, F. & Stuecker, M. F. ENSO seasonal synchronization theory. J. Clim. 27, 5285–5310 (2014).
Scaife, A. A. et al. ENSO affects the North Atlantic Oscillation 1 year later. Science 386, 82–86 (2024).
Geng, X., Zhao, J. & Kug, J. S. ENSO-driven abrupt phase shift in North Atlantic Oscillation in early January. npj Clim. Atmos. Sci. 6, 80 (2023).
Toniazzo, T. & Scaife, A. A. The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett. 33, L24704 (2006).
Scaife, A. A. et al. Predictability of European winter 2015/2016. Atmos. Sci. Lett. 18, 38–44 (2017).
Hardiman, S. C. et al. Predictability of European winter 2019/20: Indian Ocean dipole impacts on the NAO. Atmos. Sci. Lett. 21, e1005 (2020).
Geng, X., Kug, J. S. & Kosaka, Y. Future changes in the wintertime ENSO–NAO teleconnection under greenhouse warming. npj Clim. Atmos. Sci. 7, 81 (2024).
Jiang, F., Zhang, W., Boucharel, J. & Jin, F.-F. Tropical origins of the Pacific Meridional Mode associated with the nonlinear interaction of ENSO with the annual cycle. Geophys. Res. Lett. 50, e2023GL106225 (2023).
Stuecker, M. F. et al. Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett. 44, 2481–2492 (2017).
Bevacqua, E. et al. More meteorological events that drive compound coastal flooding are projected under climate change. Commun. Earth Environ. 1, 47 (2020).
Marchesiello, P. et al. 3D wave-resolving simulation of sandbar migration. Ocean Modell. 180, 102127 (2022).
Bergsma, E. W. et al. Coastal morphology from space: a showcase of monitoring the topography–bathymetry continuum. Remote Sens. Environ. 261, 112469 (2021).
Tozer, C. R. et al. A tale of two Novembers: confounding influences on La Niña’s relationship with rainfall in Australia. Mon. Weather Rev. 152, 1977–1996 (2024).
Fogt, R. L. & Marshall, G. J. The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere. Wilet Interdiscip. Rev. Clim. Change 11, e652 (2020).
Gregory, J. M. et al. Concepts and terminology for sea level: mean, variability and change, both local and global. Surv. Geophys. 40, 1251–1289 (2019).
Pujol, M.-I. et al. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 12, 1067–1090 (2016).
Le Traon, P. Y. et al. From observation to information and users: the Copernicus Marine Service perspective. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00234 (2019).
Carrère, L. & Lyard, F. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—comparisons with observations. Geophys. Res. Lett. 30, 1275 (2003).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Pascual, A., Marcos, M. & Gomis, D. Comparing the sea level response to pressure and wind forcing of two barotropic models: validation with tide gauge and altimetry data. J. Geophys. Res. 113, C07011 (2008).
Ji, T., Li, G. & Liu, R. Historical reconstruction of storm surge activity in the southeastern coastal area of China for the past 60 years. Earth Space Sci. 7, e2019EA001056 (2020).
Ablain, M., Cazenave, A., Valladeau, G. & Guinehut, S. A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci. 5, 193–201 (2009).
Bij de Vaate, I., Slobbe, D. C. & Verlaan, M. Mapping the spatiotemporal variability in global storm surge water levels using satellite radar altimetry. Ocean Dyn. 74, 169–182 (2024).
Bouffard, J. et al. Introduction and assessment of improved coastal altimetry strategies: Case study over the northwestern Mediterranean Sea. In Coastal Altimetry (eds Vignudelli, S. et al.) Ch. 12 (Springer, 2010).
Cazenave, C. K. et al. Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob. Planet. Change 65, 83–88 (2009).
Le Cann, B. Barotropic tidal dynamics of the Bay of Biscay shelf: observations, numerical modelling and physical interpretation. Cont. Shelf Res. 10, 723–758 (1990).
Lyard, F. et al. Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn. 56, 394–415 (2006).
Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L. & Picot, N. FES2014 global ocean tide atlas: design and performance. Ocean Sci. 17, 615–649 (2021).
Ramos-Alcántara, J., Gomis, D. & Jordà, G. Reconstruction of Mediterranean coastal sea level at different timescales based on tide gauge records. Ocean Sci. 18, 1781–1803 (2022).
Volkov, D. L., Larnicol, G. & Dorandeu, J. Improving the quality of satellite altimetry data over continental shelves. J. Geophys. Res. 112, C06020 (2007).
Kodaira, T., Thompson, K. R. & Bernier, N. B. The effect of density stratification on the prediction of global storm surges. Ocean Dyn. 66, 1733–1743 (2016).
Reguero, B. G., Losada, I. J., Díaz-Simal, P., Méndez, F. J. & Beck, M. W. Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS ONE 10, e0133409 (2015).
Haigh, I. et al. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK. Sci. Data 3, 160107 (2016).
Mawdsley, R. J. & Haigh, I. D. Spatial and temporal variability and long-term trends in skew surges globally. Front. Mar. Sci. 3, 29 (2016).
Muis, S. et al. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 7, 11969 (2016).
Horsburgh, K. J. & Wilson, C. Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. J. Geophys. Res. 112, C08003 (2007).
Melet, A., Almar, R. & Meyssignac, B. What dominates sea level at the coast: a case study for the Gulf of Guinea. Ocean Dyn. 66, 623–636 (2016).
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15, 779–808 (2019).
Stockdon, H. F., Holman, R. A., Howd, P. A. & Sallenger, A. H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 53, 573–588 (2006).
Iribarren, C. R. & Nogales, C. Protection des ports, In Proc. XVIIth International Navigation Congress, Section II, Communication Vol. 4 31–80 (1949).
Tadono, T. et al. Generation of the 30 m-mesh global digital surface model by alos prism, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B4, 157–162 (2016).
Zhang, K. et al. Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sens. Environ. 225, 290–306 (2019).
Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011).
Climate Indices: Monthly Atmospheric and Ocean Time Series (NOAA); https://psl.noaa.gov/data/climateindices/list/
DeMaria, M. The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci. 53, 2076–2088 (1996).
Jin, F.-F. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 119–151 (American Geophysical Union, 2020).
Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54, 811–829 (1997).
Hasselmann, K. Stochastic climate models part I. Theory. Tellus 28, 473–485 (1976).
Frankignoul, C. & Hasselmann, K. Stochastic climate models, part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus 29, 289–305 (1977).
Stuecker, M. F. The climate variability trio: stochastic fluctuations, El Niño, and the seasonal cycle. Geosci. Lett. 10, 51 (2023).
Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic Meridional Modes of tropical atmosphere–ocean variability. J. Clim. 17, 4143–4158 (2004).
Jin, Y. et al. The Indian Ocean weakens ENSO spring predictability barrier: role of the Indian Ocean basin and dipole modes. J. Clim. 36, 8331–8345 (2023).
Hang, H., Clement, A. & Nezio, P. D. The South Pacific Meridional Mode: a mechanism for ENSO-like variability. J. Clim. 27, 769–783 (2014).
Saji, N. et al. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).
Jo, H.-S. et al. Southern Indian Ocean dipole as a trigger for Central Pacific El Niño since the 2000s. Nat. Commun. 13, 6965 (2022).
Enfield, D. B., Mestas-Nuñez, A. M., Mayer, D. A. & Cid-Serrano, L. How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures. J. Geophys. Res. 104, 7841–7848 (1999).
Zebiak, S. E. Air–Sea Interaction in the Equatorial Atlantic region. J. Clim. 6, 1567–1586 (1993).
Ham, Y.-G. et al. Inter-basin interaction between variability in the South Atlantic Ocean and the El Niño/Southern Oscillation. Geophys. Res. Lett. 48, e2021GL093338 (2021).
Zhao, S. Extended nonlinear recharge oscillator (XRO) model for ‘Explainable El Niño predictability from climate mode interactions’. Zenodo https://zenodo.org/records/10681114 (2024).
Boucharel, J. et al. Global coastal total water level variability and exceedance statistics (1958–2023). DataSuds https://doi.org/10.23708/OUZPH4 (2025).
Biausque, M. Approche multi-proxys de la réponse des plages sableuses ouvertes aux événements de tempêtes, en incluant les phases de récupération. Physique Atmosphérique et Océanique. PhD thesis, Univ. Bordeaux (2018).