McMichael, C., Dasgupta, S., Ayeb-Karlsson, S. & Kelman, I. A review of estimating population exposure to sea-level rise and the relevance for migration. Environ. Res. Lett. 15, 123005 (2020).

Article 

Google Scholar
 

Cozannet, L. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 9 (Cambridge Univ. Press, 2021).

Haasnoot, M. et al. Adaptation to uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the coastal adaptation strategy of the Netherlands. Environ. Res. Lett. 15, 034007 (2020).

Article 

Google Scholar
 

Han, W. et al. Impacts of basin-scale climate modes on coastal sea level: a review. Surv. Geophys. 40, 1493–1541 (2019).

Article 

Google Scholar
 

Roberts, C. D. et al. On the drivers and predictability of seasonal-to-interannual variations in regional sea level. J. Clim. 29, 7565–7585 (2016).

Article 

Google Scholar
 

Boucharel, J. et al. Contrasted influence of climate modes teleconnections to the interannual variability of coastal sea level components—implications for statistical forecasts. Clim. Dyn. 61, 4011–4032 (2023).

Article 

Google Scholar
 

Meyssignac, B. et al. Causes of the regional variability in observed sea level, sea surface temperature and ocean colour over the period 1993–2011. Surv. Geophys. 38, 187–215 (2017).

Article 

Google Scholar
 

Todd, A. et al. Ocean-only FAFMIP: understanding regional patterns of ocean heat content and dynamic sea level change. J. Adv. Model. Earth Syst. 12, e2019MS002027 (2020).

Article 

Google Scholar
 

Kirezci, E. et al. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century. Sci. Rep. 10, 11629 (2020).

Article 
CAS 

Google Scholar
 

Boucharel, J., Almar, R., Kestenare, E. & Jin, F.-F. On the influence of ENSO complexity on Pan-Pacific coastal wave extremes. Proc. Natl Acad. Sci. USA 118, e2115599118 (2021).

Article 
CAS 

Google Scholar
 

Marcos, M. et al. Increased extreme coastal water levels due to the combined action of storm surges and wind waves. Geophys. Res. Lett. 46, 4356–4364 (2019).

Article 

Google Scholar
 

Dodet, G. et al. The contribution of wind-generated waves to coastal sea-level changes. Surv. Geophys. 40, 1563–1601 (2019).

Article 

Google Scholar
 

Melet, A. et al. Contribution of wave setup to projected coastal sea level changes. J. Geophys. Res. Oceans 125, e2020JC016078 (2020).

Article 

Google Scholar
 

Almar, R. et al. A global analysis of extreme coastal water levels with implications for potential coastal overtopping. Nat. Commun. 12, 3775 (2021).

Article 
CAS 

Google Scholar
 

Melet, A. et al. Under-estimated wave contribution to coastal sea-level rise. Nat. Clim. Change 8, 234–239 (2018).

Article 

Google Scholar
 

Menéndez, M. & Woodworth, P. L. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. 115, C10011 (2010).

Article 

Google Scholar
 

Vitousek, S. et al. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7, 1399 (2017).

Article 

Google Scholar
 

Vousdoukas, M. I. et al. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 9, 2360 (2018).

Article 

Google Scholar
 

Woodworth, P. L. et al. Forcing factors affecting sea level changes at the coast. Surv. Geophys. 40, 1351–1397 (2019).

Article 

Google Scholar
 

McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in earth science. Science 314, 1740–1745 (2006).

Article 
CAS 

Google Scholar
 

Lin, I.-I. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. et al.) Ch. 17 (American Geophysical Union, 2020).

Taschetto, A. S. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. et al.) Ch. 14 (American Geophysical Union, 2020).

Barnard, P. et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat. Geosci. 8, 801–807 (2015).

Article 
CAS 

Google Scholar
 

Barnard, P. et al. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nat. Commun. 8, 14365 (2017).

Article 
CAS 

Google Scholar
 

Boucharel, J., Almar, R. & Dewitte, B. Seasonal forecasts of the world’s coastal waterline: what to expect from the coming El Niño? npj Clim. Atmos. Sci. 7, 37 (2024).

Article 

Google Scholar
 

Zhao, S., Li, N., Jin, F.-F., Cheung, K. F. & Yang, Z. Contrast and predictability of island-scale El Niño influences on Hawaii wave climate. Geophys. Res. Lett. 52, 2024GL113127 (2025).

Article 

Google Scholar
 

Almar, R. et al. Influence of El Niño on the variability of global shoreline position. Nat. Commun. 14, 3133 (2023).

Article 
CAS 

Google Scholar
 

Mortlock, T. R. & Goodwin, I. D. Impacts of enhanced central Pacific ENSO on wave climate and headland–bay beach morphology. Cont. Shelf Res. 120, 14–25 (2016).

Article 

Google Scholar
 

Odériz, I., Silva, R., Mortlock, T. R. & Mori, N. El Niño-Southern Oscillation impacts on global wave climate and potential coastal hazards. J. Geophys. Res. Oceans 125, e2020JC016464 (2020).

Article 

Google Scholar
 

Kug, J. S. et al. Two types of El Niño: cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 (2009).

Article 

Google Scholar
 

Yeh, S.-W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).

Article 

Google Scholar
 

Jones, P. D., Jonsson, T. & Wheeler, D. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433–1450 (1997).

Article 

Google Scholar
 

Hurrell, J. W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).

Article 
CAS 

Google Scholar
 

Chafik, L., Nilsen, J. E. Ø & Dangendorf, S. Impact of North Atlantic teleconnection patterns on northern European sea level. J. Mar. Sci. Eng. 5, 43 (2017).

Article 

Google Scholar
 

Dodet, G., Bertin, X. & Taborda, R. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modell. 31, 120–131 (2010).

Article 

Google Scholar
 

Almar, R., Kestenare, E. & Boucharel, J. On the key influence of the remote climate variability from Tropical Cyclones, North and South Atlantic mid-latitude storms on the Senegalese coast (West Africa). Env. Res. Comm. https://doi.org/10.1088/2515-7620/ab2ec6 (2019).

Menendez, M., Mendez, F. J. & Losada, I. J. Forecasting seasonal to interannual variability in extreme sea levels. ICES J. Mar. Sci. 66, 1490–1496 (2009).

Article 

Google Scholar
 

Muis, S., Haigh, I. D., Guimarães Nobre, G., Aerts, J. C. J. H. & Ward, P. J. Influence of El Niño–Southern Oscillation on global coastal flooding. Earths Future 6, 1311–1322 (2018).

Article 

Google Scholar
 

Rashid, M. M., Wahl, T. & Chambers, D. P. Extreme sea level variability dominates coastal flood risk changes at decadal time scales. Environ. Res. Lett. 16, 024026 (2021).

Article 

Google Scholar
 

Marcos, M., Calafat, F. M., Berihuete, Á & Dangendorf, S. Long-term variations in global sea level extremes. J. Geophys. Res. Oceans 120, 8115–8134 (2015).

Article 

Google Scholar
 

Mysak, L. A., Ingram, R. G., Wang, J. & van der Baaren, A. The anomalous sea-ice extent in Hudson Bay, Baffin Bay and the Labrador Sea during three simultaneous NAO and ENSO episodes. Atmos. Ocean 34, 313–343 (1996).

Article 

Google Scholar
 

Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

Article 

Google Scholar
 

Tang, X., Li, J., Zhang, Y., Li, Y. & Zhao, S. Synergistic effect of El Niño and negative phase of North Atlantic Oscillation on winter precipitation in the southeastern United States. J. Clim. 36, 1767–1791 (2023).

Article 

Google Scholar
 

Liu, C. et al. Combined influence of ENSO and North Atlantic Oscillation (NAO) on Eurasian Steppe during 1982–2018. Sci. Total Environ. 892, 164735 (2023).

Article 
CAS 

Google Scholar
 

Zhao, S. et al. Explainable El Niño predictability from climate mode interactions. Nature 630, 891–898 (2024).

Article 
CAS 

Google Scholar
 

André, C., Monfort, D., Bouzit, M. & Vinchon, C. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events. Nat. Hazards Earth Syst. Sci. 13, 2003–2012 (2013).

Article 

Google Scholar
 

The Christmas Flood of 1964 (USGS, 2014); https://www.usgs.gov/news/featured-story/christmas-flood-1964

Rasmusson, E. M. & Carpenter, T. H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 110, 354–384 (1982).

Article 

Google Scholar
 

Larkin, N. K. & Harrison, D. E. ENSO warm (El Niño) and cold (La Niña) event life cycles: ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Clim. 15, 1118–1140 (2002).

Article 

Google Scholar
 

Stein, K., Timmermann, A., Schneider, N., Jin, F. & Stuecker, M. F. ENSO seasonal synchronization theory. J. Clim. 27, 5285–5310 (2014).

Article 

Google Scholar
 

Scaife, A. A. et al. ENSO affects the North Atlantic Oscillation 1 year later. Science 386, 82–86 (2024).

Article 
CAS 

Google Scholar
 

Geng, X., Zhao, J. & Kug, J. S. ENSO-driven abrupt phase shift in North Atlantic Oscillation in early January. npj Clim. Atmos. Sci. 6, 80 (2023).

Article 

Google Scholar
 

Toniazzo, T. & Scaife, A. A. The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett. 33, L24704 (2006).

Article 

Google Scholar
 

Scaife, A. A. et al. Predictability of European winter 2015/2016. Atmos. Sci. Lett. 18, 38–44 (2017).

Article 

Google Scholar
 

Hardiman, S. C. et al. Predictability of European winter 2019/20: Indian Ocean dipole impacts on the NAO. Atmos. Sci. Lett. 21, e1005 (2020).

Article 

Google Scholar
 

Geng, X., Kug, J. S. & Kosaka, Y. Future changes in the wintertime ENSO–NAO teleconnection under greenhouse warming. npj Clim. Atmos. Sci. 7, 81 (2024).

Article 

Google Scholar
 

Jiang, F., Zhang, W., Boucharel, J. & Jin, F.-F. Tropical origins of the Pacific Meridional Mode associated with the nonlinear interaction of ENSO with the annual cycle. Geophys. Res. Lett. 50, e2023GL106225 (2023).

Article 

Google Scholar
 

Stuecker, M. F. et al. Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett. 44, 2481–2492 (2017).

Article 

Google Scholar
 

Bevacqua, E. et al. More meteorological events that drive compound coastal flooding are projected under climate change. Commun. Earth Environ. 1, 47 (2020).

Article 

Google Scholar
 

Marchesiello, P. et al. 3D wave-resolving simulation of sandbar migration. Ocean Modell. 180, 102127 (2022).

Article 

Google Scholar
 

Bergsma, E. W. et al. Coastal morphology from space: a showcase of monitoring the topography–bathymetry continuum. Remote Sens. Environ. 261, 112469 (2021).

Article 

Google Scholar
 

Tozer, C. R. et al. A tale of two Novembers: confounding influences on La Niña’s relationship with rainfall in Australia. Mon. Weather Rev. 152, 1977–1996 (2024).

Article 

Google Scholar
 

Fogt, R. L. & Marshall, G. J. The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere. Wilet Interdiscip. Rev. Clim. Change 11, e652 (2020).

Article 

Google Scholar
 

Gregory, J. M. et al. Concepts and terminology for sea level: mean, variability and change, both local and global. Surv. Geophys. 40, 1251–1289 (2019).

Article 

Google Scholar
 

Pujol, M.-I. et al. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 12, 1067–1090 (2016).

Article 

Google Scholar
 

Le Traon, P. Y. et al. From observation to information and users: the Copernicus Marine Service perspective. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00234 (2019).

Carrère, L. & Lyard, F. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—comparisons with observations. Geophys. Res. Lett. 30, 1275 (2003).

Article 

Google Scholar
 

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

Article 

Google Scholar
 

Pascual, A., Marcos, M. & Gomis, D. Comparing the sea level response to pressure and wind forcing of two barotropic models: validation with tide gauge and altimetry data. J. Geophys. Res. 113, C07011 (2008).

Article 

Google Scholar
 

Ji, T., Li, G. & Liu, R. Historical reconstruction of storm surge activity in the southeastern coastal area of China for the past 60 years. Earth Space Sci. 7, e2019EA001056 (2020).

Article 

Google Scholar
 

Ablain, M., Cazenave, A., Valladeau, G. & Guinehut, S. A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci. 5, 193–201 (2009).

Article 

Google Scholar
 

Bij de Vaate, I., Slobbe, D. C. & Verlaan, M. Mapping the spatiotemporal variability in global storm surge water levels using satellite radar altimetry. Ocean Dyn. 74, 169–182 (2024).

Article 

Google Scholar
 

Bouffard, J. et al. Introduction and assessment of improved coastal altimetry strategies: Case study over the northwestern Mediterranean Sea. In Coastal Altimetry (eds Vignudelli, S. et al.) Ch. 12 (Springer, 2010).

Cazenave, C. K. et al. Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob. Planet. Change 65, 83–88 (2009).

Article 

Google Scholar
 

Le Cann, B. Barotropic tidal dynamics of the Bay of Biscay shelf: observations, numerical modelling and physical interpretation. Cont. Shelf Res. 10, 723–758 (1990).

Article 

Google Scholar
 

Lyard, F. et al. Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn. 56, 394–415 (2006).

Article 

Google Scholar
 

Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L. & Picot, N. FES2014 global ocean tide atlas: design and performance. Ocean Sci. 17, 615–649 (2021).

Article 

Google Scholar
 

Ramos-Alcántara, J., Gomis, D. & Jordà, G. Reconstruction of Mediterranean coastal sea level at different timescales based on tide gauge records. Ocean Sci. 18, 1781–1803 (2022).

Article 

Google Scholar
 

Volkov, D. L., Larnicol, G. & Dorandeu, J. Improving the quality of satellite altimetry data over continental shelves. J. Geophys. Res. 112, C06020 (2007).

Article 

Google Scholar
 

Kodaira, T., Thompson, K. R. & Bernier, N. B. The effect of density stratification on the prediction of global storm surges. Ocean Dyn. 66, 1733–1743 (2016).

Article 

Google Scholar
 

Reguero, B. G., Losada, I. J., Díaz-Simal, P., Méndez, F. J. & Beck, M. W. Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS ONE 10, e0133409 (2015).

Article 

Google Scholar
 

Haigh, I. et al. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK. Sci. Data 3, 160107 (2016).

Article 

Google Scholar
 

Mawdsley, R. J. & Haigh, I. D. Spatial and temporal variability and long-term trends in skew surges globally. Front. Mar. Sci. 3, 29 (2016).

Article 

Google Scholar
 

Muis, S. et al. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 7, 11969 (2016).

Article 
CAS 

Google Scholar
 

Horsburgh, K. J. & Wilson, C. Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. J. Geophys. Res. 112, C08003 (2007).

Article 

Google Scholar
 

Melet, A., Almar, R. & Meyssignac, B. What dominates sea level at the coast: a case study for the Gulf of Guinea. Ocean Dyn. 66, 623–636 (2016).

Article 

Google Scholar
 

Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15, 779–808 (2019).

Article 

Google Scholar
 

Stockdon, H. F., Holman, R. A., Howd, P. A. & Sallenger, A. H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 53, 573–588 (2006).

Article 

Google Scholar
 

Iribarren, C. R. & Nogales, C. Protection des ports, In Proc. XVIIth International Navigation Congress, Section II, Communication Vol. 4 31–80 (1949).

Tadono, T. et al. Generation of the 30 m-mesh global digital surface model by alos prism, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B4, 157–162 (2016).


Google Scholar
 

Zhang, K. et al. Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sens. Environ. 225, 290–306 (2019).

Article 

Google Scholar
 

Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011).

Article 

Google Scholar
 

Climate Indices: Monthly Atmospheric and Ocean Time Series (NOAA); https://psl.noaa.gov/data/climateindices/list/

DeMaria, M. The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci. 53, 2076–2088 (1996).

Article 

Google Scholar
 

Jin, F.-F. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 119–151 (American Geophysical Union, 2020).

Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

Article 

Google Scholar
 

Hasselmann, K. Stochastic climate models part I. Theory. Tellus 28, 473–485 (1976).


Google Scholar
 

Frankignoul, C. & Hasselmann, K. Stochastic climate models, part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus 29, 289–305 (1977).

Article 

Google Scholar
 

Stuecker, M. F. The climate variability trio: stochastic fluctuations, El Niño, and the seasonal cycle. Geosci. Lett. 10, 51 (2023).

Article 

Google Scholar
 

Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic Meridional Modes of tropical atmosphere–ocean variability. J. Clim. 17, 4143–4158 (2004).

Article 

Google Scholar
 

Jin, Y. et al. The Indian Ocean weakens ENSO spring predictability barrier: role of the Indian Ocean basin and dipole modes. J. Clim. 36, 8331–8345 (2023).

Article 

Google Scholar
 

Hang, H., Clement, A. & Nezio, P. D. The South Pacific Meridional Mode: a mechanism for ENSO-like variability. J. Clim. 27, 769–783 (2014).

Article 

Google Scholar
 

Saji, N. et al. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

Article 
CAS 

Google Scholar
 

Jo, H.-S. et al. Southern Indian Ocean dipole as a trigger for Central Pacific El Niño since the 2000s. Nat. Commun. 13, 6965 (2022).

Article 
CAS 

Google Scholar
 

Enfield, D. B., Mestas-Nuñez, A. M., Mayer, D. A. & Cid-Serrano, L. How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures. J. Geophys. Res. 104, 7841–7848 (1999).

Article 

Google Scholar
 

Zebiak, S. E. Air–Sea Interaction in the Equatorial Atlantic region. J. Clim. 6, 1567–1586 (1993).

Article 

Google Scholar
 

Ham, Y.-G. et al. Inter-basin interaction between variability in the South Atlantic Ocean and the El Niño/Southern Oscillation. Geophys. Res. Lett. 48, e2021GL093338 (2021).

Zhao, S. Extended nonlinear recharge oscillator (XRO) model for ‘Explainable El Niño predictability from climate mode interactions’. Zenodo https://zenodo.org/records/10681114 (2024).

Boucharel, J. et al. Global coastal total water level variability and exceedance statistics (1958–2023). DataSuds https://doi.org/10.23708/OUZPH4 (2025).

Biausque, M. Approche multi-proxys de la réponse des plages sableuses ouvertes aux événements de tempêtes, en incluant les phases de récupération. Physique Atmosphérique et Océanique. PhD thesis, Univ. Bordeaux (2018).