He, C. et al. Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021).
Wang, M. R. et al. A triple increase in global river basins with water scarcity due to future pollution. Nat. Commun. 15, 880 (2024).
Liu, J. G. et al. Water scarcity assessments in the past, present, and future. Earth’s Future 5, 545–559 (2017).
Schmidt-Traub, G., Kroll, C., Teksoz, K., Durand-Delacre, D. & Sachs, J. D. National baselines for the Sustainable Development Goals assessed in the SDG Index and dashboards. Nat. Geosci. 10, 547–555 (2017).
Jones, E. R., Bierkens, M. F. P. & van Vliet, M. T. H. Current and future global water scarcity intensifies when accounting for surface water quality. Nat. Clim. Change 14, 629–635 (2024).
Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 12, 1915 (2021).
Boretti, A. & Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2, 15 (2019).
Beltran-Peña, A. & D’Odorico, P. Future food security in Africa under climate change. Earth’s Future 10, e2022EF002651 (2022).
Li, X. et al. Hydrological cycle in the Heihe River basin and its implication for water resource management in endorheic basins. J. Geophys. Res. Atmos. 123, 890–914 (2018).
Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).
Zhou, X. Y., Yang, Y. H., Sheng, Z. P. & Zhang, Y. Q. Reconstructed natural runoff helps to quantify the relationship between upstream water use and downstream water scarcity in China’s river basins. Hydrol. Earth Syst. Sci. 23, 2491–2505 (2019).
Graham, N. T. et al. Humans drive future water scarcity changes across all Shared Socioeconomic Pathways. Environ. Res. Lett. 15, 014007 (2020).
Cui, R. Y. et al. Regional responses to future, demand-driven water scarcity. Environ. Res. Lett. 13, 094006 (2018).
Kriegler, E. et al. The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Global Environ. Change 22, 807–822 (2012).
Bijl, D. L. et al. A global analysis of future water deficit based on different allocation mechanisms. Water Resour. Res. 54, 5803–5824 (2018).
Jafarzadegan, K. et al. Recent advances and new frontiers in riverine and coastal flood modeling. Rev. Geophys. 61, e2022RG000788 (2023).
Calvin, K. et al. GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev. 12, 677–698 (2019).
Cao, M. et al. Spatial sequential modeling and predication of global land use and land cover changes by integrating a global change assessment model and cellular automata. Earth’s Future 7, 1102–1116 (2019).
Malik, A. et al. Implications of an emission trading scheme for India’s net-zero strategy: a modelling-based assessment. Environ. Res. Lett. 19, 084043 (2024).
Guo, A. J. et al. Predicting the water rebound effect in China under the Shared Socioeconomic Pathways. Int. J. Environ. Res. Public Health 18, 1326 (2021).
Hanasaki, N. et al. A global water scarcity assessment under Shared Socio-economic Pathways – part 1: water use. Hydrol. Earth Syst. Sci. 17, 2375–2391 (2013).
Sun, S. et al. Unraveling the effect of inter-basin water transfer on reducing water scarcity and its inequality in China. Water Res. 194, 116931 (2021).
Li, Y. Q., Zhang, L. X., Zhang, P. P., Li, X. Q. & Hao, Y. Water-energy-food nexus in China: an interregional comparison. Agric. Water Manage. 301, 108964 (2024).
Neu, D. A., Lahann, J. & Fettke, P. A systematic literature review on state-of-the-art deep learning methods for process prediction. Artif. Intell. Rev. 55, 801–827 (2022).
Fleming, S. W. Demand modulation of water scarcity sensitivities to secular climatic variation: theoretical insights from a computational maquette. Hydrol. Sci. J. 61, 2849–2859 (2016).
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change Human Policy Dimensions 42, 153–168 (2017).
Castro, M. C. et al. Examples of coupled human and environmental systems from the extractive industry and hydropower sector interfaces. Proc. Natl Acad. Sci. USA 113, 14528–14535 (2016).
Thacker, S. et al. Infrastructure for sustainable development. Nat. Sustain. 2, 324–331 (2019).
Wang, H. et al. Dietary shift can enhance the environmental benefits of crop redistribution. Environ. Impact Assess. Rev. 106, 107494 (2024).
Ansink, E. & Houba, H. Market power in water markets. J. Environ. Econ. Manage. 64, 237–252 (2012).
Shi, J., Wu, J. J. & Olen, B. Impacts of climate and weather on irrigation technology adoption and agricultural water use in the US Pacific Northwest. Agric. Econ. 53, 387–406 (2022).
Nyiwul, L. Demand for water innovation: evidence on wastewater technology adoption in thirteen African countries. Econ. Change Restruct. 56, 3383–3410 (2023).
Gershman, S. J. What have we learned about artificial intelligence from studying the brain?. Biol. Cybern. 118, 1–5 (2024).
Pincetl, S., Hogue, T. S. & Mini, C. Patterns and controlling factors of residential water use in Los Angeles, California. Water Policy 16, 1054–1069 (2014).
Savelli, E., Mazzoleni, M., Di Baldassarre, G., Cloke, H. & Rusca, M. Urban water crises driven by elites’ unsustainable consumption. Nat. Sustainability 6, 929–940 (2023).
Huang, J. J., Wu, W. Y., Maier, H. R., Wang, Q. J. & Hughes, J. A multi-objective optimization-based framework for extending reservoir service life in a changing world. J. Hydrol. 637, 131409 (2024).
Chen, Z. H., Ki, D., Li, Z. K. & Wang, K. L. Assessing equity in infrastructure investment distribution among US cities. Cities 162, 105898 (2025).
Mueller, J. T. & Gasteyer, S. The ethnically and racially uneven role of water infrastructure spending in rural economic development. Nat. Water 1, 74–82 (2023).
Meehan, K., Jurjevich, J. R., Everitt, L., Chun, N. M. J. W. & Sherrill, J. Urban inequality, the housing crisis and deteriorating water access in US cities. Nat. Cities 2, 93–103 (2025).
Brottrager, M., Crespo Cuaresma, J., Kniveton, D. & Ali, S. H. Natural resources modulate the nexus between environmental shocks and human mobility. Nat. Commun. 14, 1393 (2023).
Liu, M., Zhou, X., Huang, G. & Li, Y. The increasing water stress projected for China could shift the agriculture and manufacturing industry geographically. Commun. Earth Environ. 5, 396 (2024).
Liu, Y. Q., Zhu, J. L., Li, E. Y., Meng, Z. Y. & Song, Y. Environmental regulation, green technological innovation, and eco-efficiency: the case of Yangtze river economic belt in China. Technol. Forecasting Social Change 155, 119993 (2020).
Pei, D. J. et al. Agricultural water rebound effect and its driving factors in Xinjiang, China. Agric. Water Manage. 304, 109086 (2024).
Jaspers, D. & Proff, H. Strengthening capital-intensive companies in technology competition through innovation platforms. Eur. J. Innovation Manage. https://doi.org/10.1108/EJIM-01-2024-0050 (2025).
Klemun, M. M., Ojanperä, S. & Schweikert, A. Toward evaluating the effect of technology choices on linkages between sustainable development goals. iScience 26, 105727 (2023).
Lankford, B. A. Resolving the paradoxes of irrigation efficiency: irrigated systems accounting analyses depletion-based water conservation for reallocation. Agric. Water Manage. 287, 108437 (2023).
Li, H. Y. & Zhao, J. H. Rebound effects of new irrigation technologies: the role of water rights. Am. J. Agric. Econ. 100, 786–808 (2018).
Vermeire, J., Crucke, S., Mutesi, J. & Vinck, A. Tackling climate change under time-poverty: cooperatives as temporal pacers. Sustainable Dev. 31, 253–264 (2023).
Graham, N. T. et al. Water sector assumptions for the Shared Socioeconomic Pathways in an integrated modeling framework. Water Resour. Res. 54, 6423–6440 (2018).
Hejazi, M., Edmonds, J., Chaturvedi, V., Davies, E. & Eom, J. Scenarios of global municipal water-use demand projections over the 21st century. Hydrol. Sci. J. 58, 519–538 (2013).
Almagro, A. et al. The drivers of hydrologic behavior in Brazil: insights from a catchment classification. Water Resour. Res. 60, e2024WR037212 (2024).
Kimura, M. Generalized t-SNE through the lens of information geometry. IEEE Access 9, 129619–129625 (2021).
Wu, S., Han, H., Hou, B. & Diao, K. Hybrid model for short-term water demand forecasting based on error correction using chaotic time series. Water 12, 1683 (2020).
Seok, J.-H. et al. Abnormal data refinement and error percentage correction methods for effective short-term hourly water demand forecasting. Int. J. Control Autom. Syst. 12, 1245–1256 (2014).
Bata, M. H., Carriveau, R. & Ting, D. S. K. Short-term water demand forecasting using nonlinear autoregressive artificial neural networks. J. Water Resour. Plan. Manage. 146, 04020008 (2020).
Chen, J. & Boccelli, D. L. Forecasting hourly water demands with seasonal autoregressive models for real-time application. Water Resources Res. 54, 879–894 (2018).
Rajballie, A., Tripathi, V. & Chinchamee, A. Water consumption forecasting models – a case study in Trinidad (Trinidad and Tobago). Water Supply 22, 5434–5447 (2022).
Garen, D. C. Improved techniques in regression-based streamflow volume forecasting. J. Water Resour. Plann. Manage. 118, 654–670 (1992).
Fleming, S. W., Garen, D. C., Goodbody, A. G., McCarthy, C. S. & Landers, L. C. Assessing the new Natural Resources Conservation Service water supply forecast model for the American West: a challenging test of explainable, automated, ensemble artificial intelligence. J. Hydrol. 602, 126782 (2021).
Zhang, Y. Q., Yin, Y. H., Yin, M. J. & Zhang, X. F. A high-resolution gridded dataset for China’s monthly sectoral water use. Sci. Data 12, 1157 (2025).
Liu, L. L., Cao, X., Li, S. J. & Jie, N. A 31-year (1990-2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci. Data 11, 124 (2024).
Kummu, M., Kosonen, M. & Sayyar, S. M. Downscaled gridded global dataset for gross domestic product (GDP) per capita PPP over 1990–2022. Sci. Data 12, 178 (2025).
Zhang, L., Xie, Y. H., Zhu, X. F., Ma, Q. M. & Brocca, L. CIrrMap250: annual maps of China’s irrigated cropland from 2000 to 2020 developed through multisource data integration. Earth Syst. Sci. Data 16, 5207–5226 (2024).
Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 degrees C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).
Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).
Babuna, P. et al. Modeling water inequality and water security: the role of water governance. J. Environ. Manage. 326, 116815–116815 (2023).
Sheng, J. Data and code for: global water security threatened by rising inequality. Zenodo https://doi.org/10.5281/zenodo.17445879 (2025).