Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022). This paper delineated altermagnetism as an exclusively distinct spin-group symmetry class of d-, g- or i-wave spin-ordered phases.
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022). This perspective outlined envisaged research directions of altermagnetism.
Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020). This paper predicted that an interplay of crystal and collinear spin orders in a class of materials can lead to a time-reversal-symmetry-breaking spin-split electronic structure and, when spin–orbit coupling is included, to the anomalous Hall effect.
Jungwirth, T. et al. Altermagnetism: an unconventional spin-ordered phase of matter. Newton 1, 100162 (2025).
Mazin, I. I. Notes on altermagnetism and superconductivity. AAPPS Bull. 35, 18 (2025). These informal notes, originally posted as a preprint on the arXiv server, aimed to stimulate the exploration of the interplay of altermagnetism with superconductivity.
Beenakker, C. W. J. & Vakhtel, T. Phase-shifted Andreev levels in an altermagnet Josephson junction. Phys. Rev. B 108, 075425 (2023).
Mazin, I., González-Hernández, R. & Šmejkal, L. Induced monolayer altermagnetism in MnP(S,Se)3 and FeSe. Preprint at http://arxiv.org/abs/2309.02355 (2023).
Brekke, B., Brataas, A. & Sudbø, A. Two-dimensional altermagnets: superconductivity in a minimal microscopic model. Phys. Rev. B 108, 224421 (2023).
Li, Y.-X. & Liu, C.-C. Majorana corner modes and tunable patterns in an altermagnet heterostructure. Phys. Rev. B 108, 205410 (2023).
Zhu, D., Zhuang, Z.-Y., Wu, Z. & Yan, Z. Topological superconductivity in two-dimensional altermagnetic metals. Phys. Rev. B 108, 184505 (2023).
Sumita, S., Naka, M. & Seo, H. Fulde–Ferrell–Larkin–Ovchinnikov state induced by antiferromagnetic order in k-type organic conductors. Phys. Rev. Res. 5, 043171 (2023).
Ghorashi, S. A. A., Hughes, T. L. & Cano, J. Altermagnetic routes to Majorana modes in zero net magnetization. Phys. Rev. Lett. 133, 106601 (2024).
Papaj, M. Andreev reflection at the altermagnet-superconductor interface. Phys. Rev. B 108, L060508 (2023).
Wei, M. et al. Gapless superconducting state and mirage gap in altermagnets. Phys. Rev. B 109, L201404 (2023).
Zhang, S.-B., Hu, L.-H. & Neupert, T. Finite-momentum Cooper pairing in proximitized altermagnets. Nat. Commun. 15, 1801 (2024).
Cheng, Q. & Sun, Q.-F. Orientation-dependent Josephson effect in spin-singlet superconductor/altermagnet/spin-triplet superconductor junctions. Phys. Rev. B 109, 024517 (2024).
Zhao, Y. et al. Hybrid-order topology in unconventional magnets of Eu-based Zintl compounds with surface-dependent quantum geometry. Phys. Rev. B 110, 205111 (2024).
Mæland, K., Brekke, B. & Sudbø, A. Many-body effects on superconductivity mediated by double-magnon processes in altermagnets. Phys. Rev. B 109, 134515 (2024).
Chakraborty, D. & Black-Schaffer, A. M. Zero-field finite-momentum and field-induced superconductivity in altermagnets. Phys. Rev. B 110, L060508 (2024).
Banerjee, S. & Scheurer, M. S. Altermagnetic superconducting diode effect. Phys. Rev. B 110, 024503 (2024).
Jeschke, H. O., Shimizu, M. & Mazin, I. I. CuAg(SO4)2: a doubly strongly correlated altermagnetic three-dimensional analog of the parent compounds of high-Tc cuprates. Phys. Rev. B 109, L220412 (2024).
Verbeek, X. H., Urru, A. & Spaldin, N. A. Hidden orders and (anti-)magnetoelectric effects in Cr2O3 and Fe2O3. Phys. Rev. Res. 5, L042018 (2023).
Bernardini, F., Fiebig, M. & Cano, A. Ruddlesden–Popper and perovskite phases as a material platform for altermagnetism. J. Appl. Phys. 137, 103903 (2025).
Zyuzin, A. A. Magnetoelectric effect in superconductors with d-wave magnetization. Phys. Rev. B 109, L220505 (2024).
Sim, G. & Knolle, J. Pair density waves and supercurrent diode effect in altermagnets. Phys. Rev. B 112, L020502 (2025).
Hu, J.-X., Matsyshyn, O. & Song, J. C. W. Nonlinear superconducting magnetoelectric effect. Phys. Rev. Lett. 134, 026001 (2025).
Šmejkal, L. Altermagnetic multiferroics and altermagnetoelectric effect. Preprint at http://arxiv.org/abs/2411.19928 (2024). This paper and refs. 28 and 29 theoretically predicted an interplay of altermagnetism with ferroelectricity.
Duan, X. et al. Antiferroelectric altermagnets: antiferroelectricity alters magnets. Phys. Rev. Lett. 134, 106801 (2025).
Gu, M. et al. Ferroelectric switchable altermagnetism. Phys. Rev. Lett. 134, 106802 (2024).
Parthenios, N. et al. Spin and pair density waves in two-dimensional altermagnetic metals. Phys. Rev. B 112, 214410 (2025).
Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022). This paper reviewed the anomalous Hall effect in altermagnets and non-collinear compensated magnets.
Bai, L. et al. Altermagnetism: exploring new frontiers in magnetism and spintronics. Adv. Funct. Mater. 34, 2409327 (2024).
Liu, Q., Dai, X. & Blügel, S. Different facets of unconventional magnetism. Nat. Phys. 21, 329–331 (2025).
Song, C. et al. Altermagnets as a new class of functional materials. Nat. Rev. Mater. 10, 473–485 (2025).
Jungwirth, T. et al. Altermagnetic spintronics. Preprint at http://arxiv.org/abs/2508.09748 (2025).
Liu, P., Li, J., Han, J., Wan, X. & Liu, Q. Spin-group symmetry in magnetic materials with negligible spin–orbit coupling. Phys. Rev. X 12, 21016 (2022). This paper discusses spin space-group symmetries of magnetic materials and corresponding band degeneracies and emergent topological phases.
Litvin, D. B. & Opechowski, W. Spin groups. Physica 76, 538–554 (1974). This paper describes the mathematical spin-group formalism.
Andreev, A. & Grishchuk, I. Spin nematics. Sov. Phys. JETP 60, 267 (1984).
Gor’kov, L. P. & Sokol, A. Nontrivial magnetic order: localized versus itinerant systems. Phys. Rev. Lett. 69, 2586–2589 (1992).
Leggett, A. J. Nobel Lecture: Superfluid 3-He: the early days as seen by a theorist. Rev. Mod. Phys. 76, 999 (2004). This paper reviews the superfluid phase of 3He, including the spontaneous breaking of real-space and spin-space rotation symmetries.
Moessner, R. & Moore, J. E. Topological Phases of Matter (Cambridge Univ. Press, 2021).
Strange, P. Relativistic Quantum Mechanics 1 edn (Cambridge Univ. Press, Cambridge, 1998).
Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems Springer Tracts in Modern Physics Vol. 191 (Springer, 2003).
Landau, L. & Lifshitz, E. Electrodynamics of Continuous Media 2 edn, Course of Theoretical Physics Vol. 8 (Pergamon Press, 1965).
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Franz, M. & Molenkamp, L. (eds) Contemporary Concepts of Condensed Matter Science Topological Insulators Vol. 6 (Elsevier, 2013).
Murakami, S. & Yokoyama, T. Quantum Spin Hall Effect and Topological Insulators Vol. 1 (Oxford Univ. Press, 2017).
Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Elcoro, L. et al. Magnetic topological quantum chemistry. Nat. Commun. 12, 5965 (2021).
Mazin, I. I., Koepernik, K., Johannes, M. D., González-Hernández, R. & Šmejkal, L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl Acad. Sci. USA 118, e2108924118 (2021).
Reichlova, H. et al. Observation of a spontaneous anomalous Hall response in the Mn5Si d-wave altermagnet candidate. Nat. Commun. 15, 4961 (2024).
Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin–momentum coupling. Phys. Rev. X 12, 011028 (2022).
Gonzalez Betancourt, R. D. et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 130, 036702 (2023).
Šmejkal, L. et al. Chiral magnons in altermagnetic RuO2. Phys. Rev. Lett. 131, 256703 (2023).
Chen, X. et al. Unconventional magnons in collinear magnets dictated by spin space groups. Nature 640, 349–354 (2025).
Hariki, A. et al. X-ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett. 132, 176701 (2024).
Hellenes, A. B. et al. P-wave magnets. Preprint at http://arxiv.org/abs/2309.01607 (2023).
Hellenes, A. B., Jungwirth, T., Sinova, J. & Šmejkal, L. Exchange spin–orbit coupling and unconventional p-wave magnetism. Preprint at http://arxiv.org/abs/2309.01607v1 (2023).
McClarty, P. A. & Rau, J. G. Landau theory of altermagnetism. Phys. Rev. Lett. 132, 176702 (2023).
Smolyanyuk, A., Šmejkal, L. & Mazin, I. I. A tool to check whether a symmetry-compensated collinear magnetic material is antiferro- or altermagnetic. SciPost Phys. Codebases 30, 1–16 (2024).
Shinohara, K. et al. Algorithm for spin symmetry operation search. Acta Crystallogr. A 80, 94–103 (2024).
Watanabe, H., Shinohara, K., Nomoto, T., Togo, A. & Arita, R. Symmetry analysis with spin crystallographic groups: disentangling effects free of spin–orbit coupling in emergent electromagnetism. Phys. Rev. B 109, 094438 (2024).
Jiang, Y. et al. Enumeration of spin-space groups: toward a complete description of symmetries of magnetic orders. Phys. Rev. X 14, 031039 (2024).
Zhu, H., Li, J., Chen, X., Yu, Y. & Liu, Q. Magnetic geometry induced quantum geometry and nonlinear transports. Nat. Commun. 16, 4882 (2025).
Chen, X. et al. Enumeration and representation theory of spin space groups. Phys. Rev. X 14, 031038 (2024).
Schiff, H., Corticelli, A., Guerreiro, A., Romhányi, J. & McClarty, P. The crystallographic spin point groups and their representations. SciPost Phys. 18, 109 (2025).
Xiao, Z., Zhao, J., Li, Y., Shindou, R. & Song, Z.-D. Spin space groups: full classification and applications. Phys. Rev. X 14, 031037 (2024).
Litvin, D. B. Magnetic Group Tables (IUCr, 2013). http://www.iucr.org/publ/978-0-9553602-2-0.
Berlijn, T. et al. Itinerant antiferromagnetism in RuO2. Phys. Rev. Lett. 118, 077201 (2017).
Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO2 determined by resonant X-ray scattering. Phys. Rev. Lett. 122, 017202 (2019).
Lovesey, S. W., Khalyavin, D. D. & van der Laan, G. Magnetic properties of RuO2 and charge-magnetic interference in Bragg diffraction of circularly polarized X-rays. Phys. Rev. B 105, 014403 (2022).
Occhialini, C. A. et al. Local electronic structure of rutile RuO2. Phys. Rev. Res. 3, 033214 (2021).
Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).
Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).
Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).
Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).
Lovesey, S. W., Khalyavin, D. D. & van der Laan, G. Magnetic structure of RuO2 in view of altermagnetism. Phys. Rev. B 108, L121103 (2023).
Liu, Y. et al. Inverse altermagnetic spin splitting effect-induced terahertz emission in RuO2. Adv. Opt. Mater. 11, 2300177 (2023).
Fedchenko, O. et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 10, 31 (2024).
Smolyanyuk, A., Mazin, I. I., Garcia-Gassull, L. & Valentí, R. Fragility of the magnetic order in the prototypical altermagnet RuO2. Phys. Rev. B 109, 134424 (2024).
Lin, Z. et al. Observation of giant spin splitting and d-wave spin texture in room temperature altermagnet RuO2. Preprint at http://arxiv.org/abs/2402.04995 (2024).
Keßler, P. et al. Absence of magnetic order in RuO2: insights from μSR spectroscopy and neutron diffraction. npj Spintronics 2, 50 (2024).
Li, Z. et al. Fully field-free spin-orbit torque switching induced by spin splitting effect in altermagnetic RuO2. Adv. Mater. 37, 2416712 (2025).
Wenzel, M. et al. Fermi-liquid behavior of nonaltermagnetic RuO2. Phys. Rev. B 111, L041115 (2025).
Jeong, S. G. et al. Altermagnetic polar metallic phase in ultra-thin epitaxially-strained RuO2 films. Preprint at http://arxiv.org/abs/2405.05838 (2024).
Hiraishi, M. et al. Nonmagnetic ground state in RuO2 revealed by muon spin rotation. Phys. Rev. Lett. 132, 166702 (2024).
López-Moreno, S., Romero, A. H., Mejía-López, J. & Muñoz, A. First-principles study of pressure-induced structural phase transitions in MnF2. Phys. Chem. Chem. Phys. 18, 33250–33263 (2016). This paper reported density-functional-theory calculations of non-relativistic band structure of MnF2.
Noda, Y., Ohno, K. & Nakamura, S. Momentum-dependent band spin splitting in semiconducting MnO2: a density functional calculation. Phys. Chem. Chem. Phys. 18, 13294–13303 (2016).
Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn 88, 123702 (2019).
Yuan, L.-D., Wang, Z., Luo, J.-W., Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).
Bhowal, S. & Spaldin, N. A. Ferroically ordered magnetic octupoles in d-wave altermagnets. Phys. Rev. X 14, 011019 (2024).
Jaeschke-Ubiergo, R. et al. Atomic altermagnetism. Preprint at https://arxiv.org/pdf/2503.10797 (2025).
Lovesey, S. W., Khalyavin, D. D. & van der Laan, G. Templates for magnetic symmetry and altermagnetism in hexagonal MnTe. Phys. Rev. B 108, 174437 (2023).
Mazin, I. I. Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning. Phys. Rev. B 107, L100418 (2023).
Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024). This paper and refs. 99–101 reported experimental spectroscopic observations of a g-wave altermagnetic band structure of MnTe.
Lee, S. S. et al. Broken Kramers degeneracy in altermagnetic MnTe. Phys. Rev. Lett. 132, 036702 (2024).
Osumi, T. et al. Observation of a giant band splitting in altermagnetic MnTe. Phys. Rev. B 109, 115102 (2024).
Hajlaoui, M. et al. Temperature dependence of relativistic valence band splitting induced by an altermagnetic phase transition. Adv. Mater. 36, 2314076 (2024).
Aoyama, T. & Ohgushi, K. Piezomagnetic properties in altermagnetic MnTe. Phys. Rev. Mater. 8, L041402 (2024).
Kluczyk, K. P. et al. Coexistence of anomalous Hall effect and weak magnetization in a nominally collinear antiferromagnet MnTe. Phys. Rev. B 110, 155201 (2024).
Reimers, S. et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun. 15, 2116 (2024).
Yang, G. et al. Three-dimensional mapping of the altermagnetic spin splitting in CrSb. Nat. Commun. 16, 1442 (2025).
Ding, J. et al. Large band splitting in g-wave altermagnet CrSb. Phys. Rev. Lett. 133, 206401 (2024).
Li, C. et al. Topological Weyl altermagnetism in CrSb. Commun. Phys. 8, 311 (2025).
Lu, W. et al. Signature of topological surface bands in altermagnetic Weyl semimetal CrSb. Nano Lett. 25, 7343–7350 (2025).
Zeng, M. et al. Observation of spin splitting in room-temperature metallic antiferromagnet CrSb. Adv. Sci. 11, 2406529 (2024).
Dale, N. et al. Non-relativistic spin splitting above and below the Fermi level in a g-wave altermagnet. Preprint at http://arxiv.org/abs/2411.18761 (2024).
Liu, Z., Ozeki, M., Asai, S., Itoh, S. & Masuda, T. Chiral-split magnon in altermagnetic MnTe. Phys. Rev. Lett. 133, 156702 (2024).
Jiang, B. et al. A metallic room-temperature d-wave altermagnet. Nat. Phys. 21, 754–759 (2025). This paper and ref. 113 reported experimental spectroscopic observations of a d-wave altermagnetic band structure.
Zhang, F. et al. Crystal-symmetry-paired spin–valley locking in a layered room-temperature metallic altermagnet candidate. Nat. Phys. 21, 760–767 (2025).
Antonenko, D. S., Fernandes, R. M. & Venderbos, J. W. F. Mirror Chern bands and Weyl nodal loops in altermagnets. Phys. Rev. Lett. 134, 096703 (2025). This paper reported a theoretical study of topological phenomena in 2D (Lieb lattice) and 3D minimal models of altermagnetism.
Kaushal, N. & Franz, M. Altermagnetism in modified Lieb lattice Hubbard model. Phys. Rev. Lett. 135, 156502 (2025).
Wei, C. C. et al. La2O3Mn2Se2: a correlated insulating layered d-wave altermagnet. Phys. Rev. Mater. 9, 24402 (2025).
Maharaj, D. D. et al. Octupolar versus Néel order in cubic 5d2 double perovskites. Phys. Rev. Lett. 124, 87206 (2020).
Néel, L. Magnetism and local molecular field. Science 174, 985–992 (1971).
Chakraborty, A., González Hernández, R., Šmejkal, L. & Sinova, J. Strain-induced phase transition from antiferromagnet to altermagnet. Phys. Rev. B 109, 144421 (2024).
Liu, Y., Yu, J. & Liu, C.-C. Twisted magnetic van der Waals bilayers: an ideal platform for altermagnetism. Phys. Rev. Lett. 133, 206702 (2024).
Leeb, V., Mook, A., Šmejkal, L. & Knolle, J. Spontaneous formation of altermagnetism from orbital ordering. Phys. Rev. Lett. 132, 236701 (2024).
Fernandes, R. M., de Carvalho, V. S., Birol, T. & Pereira, R. G. Topological transition from nodal to nodeless Zeeman splitting in altermagnets. Phys. Rev. B 109, 024404 (2024).
Das, S., Suri, D. & Soori, A. Transport across junctions of altermagnets with normal metals and ferromagnets. J. Phys. Condensed Matter 35, 435302 (2023).
Maier, T. A. & Okamoto, S. Weak-coupling theory of neutron scattering as a probe of altermagnetism. Phys. Rev. B 108, L100402 (2023).
Sato, T., Haddad, S., Fulga, I. C., Assaad, F. F. & van den Brink, J. Altermagnetic anomalous Hall effect emerging from electronic correlations. Phys. Rev. Lett. 133, 086503 (2024).
Roig, M., Kreisel, A., Yu, Y., Andersen, B. M. & Agterberg, D. F. Minimal models for altermagnetism. Phys. Rev. B 110, 144412 (2024).
Bose, A., Vadnais, S. & Paramekanti, A. Altermagnetism and superconductivity in a multiorbital t–J model. Phys. Rev. B 110, 205120 (2024).
Ferrari, F. & Valentí, R. Altermagnetism on the Shastry–Sutherland lattice. Phys. Rev. B 110, 205140 (2024).
Rooj, S., Saxena, S. & Ganguli, N. Altermagnetism in the orthorhombic Pnm structure through group theory and DFT calculations. Phys. Rev. B 111, 014434 (2025).
Töpfer, J. & Goodenough, J. LaMnO3+δ revisited. J. Solid State Chem. 130, 117–128 (1997).
Chen, H., Niu, Q. & Macdonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014). This paper predicted the anomalous Hall effect in a non-collinear compensated magnet.
Zhou, J. et al. Predicted quantum topological Hall effect and noncoplanar antiferromagnetism in K0.5RhO2. Phys. Rev. Lett. 116, 256601 (2016).
Feng, W. et al. Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets. Nat. Commun. 11, 118 (2020).
Ahn, K.-H., Hariki, A., Lee, K.-W. & Kuneš, J. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 99, 184432 (2019).
Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019).
Guo, Y. et al. Spin-split collinear antiferromagnets: a large-scale ab-initio study. Mater. Today Phys. 32, 100991 (2023).
Ma, H.-Y. et al. Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 12, 2846 (2021).
Egorov, S. A. & Evarestov, R. A. Colossal spin splitting in the monolayer of the collinear antiferromagnet MnF2. J. Phys. Chem. Lett. 12, 2363–2369 (2021).
Cui, Q., Zhu, Y., Yao, X., Cui, P. & Yang, H. Giant spin-Hall and tunneling magnetoresistance effects based on a two-dimensional nonrelativistic antiferromagnetic metal. Phys. Rev. B 108, 024410 (2023).
Chen, X., Wang, D., Li, L. & Sanyal, B. Giant spin-splitting and tunable spin-momentum locked transport in room temperature collinear antiferromagnetic semimetallic CrO monolayer. Appl. Phys. Lett. 123, 022402 (2023).
Sødequist, J. & Olsen, T. Two-dimensional altermagnets from high throughput computational screening: symmetry requirements, chiral magnons, and spin–orbit effects. Appl. Phys. Lett. 124, 182409 (2024).
Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).
Zhu, Y. et al. Multipiezo effect in altermagnetic V2SeTeO monolayer. Nano Lett. 24, 472–478 (2024).
Wigner, E. Ueber die Operation der Zeitumkehr in der Quantenmechanik. Nachr. Ges. Wiss. Gott. Math. Phys. Kl. 1932, 546–559 (1932).
Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Dirac fermions in an antiferromagnetic semimetal. Nat. Phys. 12, 1100–1104 (2016).
Šmejkal, L., Železný, J., Sinova, J. & Jungwirth, T. Electric control of Dirac quasiparticles by spin–orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402 (2017).
Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).
Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). This paper reported the experimental observation of the anomalous Hall effect in a non-collinear compensated magnet.
Kiyohara, N., Tomita, T. & Nakatsuji, S. Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge. Phys. Rev. Appl. 5, 064009 (2016).
Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).
Takagi, H. et al. Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials. Nat. Phys. 19, 961–968 (2023).
Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).
Li, X. et al. Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).
Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018).
Matsuda, T., Kanda, N., Higo, T. & Matsunaga, R. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films. Nat. Commun. 11, 909 (2020).
Kimata, M. et al. X-ray study of ferroic octupole order producing anomalous Hall effect. Nat. Commun. 12, 5582 (2021).
Sakamoto, S. et al. Observation of spontaneous X-ray magnetic circular dichroism in a chiral antiferromagnet. Phys. Rev. B 104, 134431 (2021).
Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).
Zhang, Y., Železný, J., Sun, Y., van den Brink, J. & Yan, B. Spin Hall effect emerging from a noncollinear magnetic lattice without spin–orbit coupling. New J. Phys. 20, 073028 (2018).
Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).
Hu, S. et al. Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat. Commun. 13, 4447 (2022).
Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).
Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021).
Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022).
Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin–orbit torque. Sci. Adv. 8, eabo5930 (2022).
Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).
Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).
Nakatsuji, S. & Arita, R. Topological magnets: functions based on Berry phase and multipoles. Annu. Rev. Condensed Matter Phys. 13, 119–142 (2022).
Rimmler, B. H., Pal, B. & Parkin, S. S. P. Non-collinear antiferromagnetic spintronics. Nat. Rev. Mater. 10, 109–127 (2024).
Han, J., Yoon, J.-Y., Ohno, H. & Fukami, S. Unconventional responses in non-collinear antiferromagnets. Newton 1, 100012 (2025).
Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024).
Ezawa, M. Topological insulators and superconductors based on p-wave magnets: electrical control and detection of a domain wall. Phys. Rev. B 110, 165429 (2024).
Sivianes, J., dos Santos, F. J. & Ibañez-Azpiroz, J. Optical signatures of spin symmetries in unconventional magnets. Phys. Rev. Lett. 134, 196907 (2025).
Chakraborty, A. et al. Highly efficient non-relativistic Edelstein effect in p-wave magnets. Nat. Commun. 16, 7270 (2023).
Yu, Y. et al. Odd-parity magnetism driven by antiferromagnetic exchange. Phys. Rev. Lett. 135, 046701 (2025).
Wang, M. et al. Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal. Nat. Commun. 14, 8240 (2023).
Han, L. et al. Electrical 180° switching of Néel vector in spin-splitting antiferromagnet. Sci. Adv. 10, eadn0479 (2024).
Takagi, R. et al. Spontaneous Hall effect induced by collinear antiferromagnetic order at room temperature. Nat. Mater. 24, 63–68 (2025).
Ray, M. K. et al. Zero-field Hall effect emerging from a non-Fermi liquid in a collinear antiferromagnet V1/3NbS2. Nat. Commun. 16, 3532 (2025).
Fakhredine, A., Sattigeri, R. M., Cuono, G. & Autieri, C. Interplay between altermagnetism and nonsymmorphic symmetries generating large anomalous Hall conductivity by semi-Dirac points induced anticrossings. Phys. Rev. B 108, 115138 (2023).
Fang, Y., Cano, J. & Ghorashi, S. A. A. Quantum geometry induced nonlinear transport in altermagnets. Phys. Rev. Lett. 133, 106701 (2024).
Li, Y.-X., Liu, Y. & Liu, C.-C. Creation and manipulation of higher-order topological states by altermagnets. Phys. Rev. B 109, L201109 (2024).
Zhou, X. et al. Crystal thermal transport in altermagnetic RuO2. Phys. Rev. Lett.s 132, 056701 (2024).
Zhan, J., Li, J., Shi, W., Chen, X. Q. & Sun, Y. Coexistence of Weyl semimetal and Weyl nodal loop semimetal phases in a collinear antiferromagnet. Phys. Rev. B 107, 224402 (2023).
Nag, J. et al. GdAlSi: an antiferromagnetic topological Weyl semimetal with nonrelativistic spin splitting. Phys. Rev. B 110, 224436 (2024).
Parshukov, K., Wiedmann, R. & Schnyder, A. P. Topological responses from gapped Weyl points in 2D altermagnets. Phys. Rev. B 111, 224406 (2025).
Rao, P., Mook, A. & Knolle, J. Tunable band topology and optical conductivity in altermagnets. Phys. Rev. B 110, 024425 (2024).
Tao, L. L. & Tsymbal, E. Y. Persistent spin texture enforced by symmetry. Nat. Commun. 9, 2763 (2018).
Ji, J., Lou, F., Yu, R., Feng, J. S. & Xiang, H. J. Symmetry-protected full-space persistent spin texture in two-dimensional materials. Phys. Rev. B 105, L041404 (2022).
Bernevig, B. A., Orenstein, J. & Zhang, S. C. Exact SU(2) symmetry and persistent spin helix in a spin–orbit coupled system. Phys. Rev. Lett. 97, 236601 (2006).
Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009).
Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).
Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).
Xu, L. et al. Finite-temperature violation of the anomalous transverse Wiedemann–Franz law. Sci. Adv. 6, eaaz3522 (2020).
Chen, T. et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge. Nat. Commun. 12, 572 (2021).
Ghosh, S. et al. Raman spectroscopic evidence for linearly dispersed nodes and magnetic ordering in the topological semimetal V1/3NbS2. Preprint at http://arxiv.org/abs/2504.04590 (2025).
Sun, K., Yao, H., Fradkin, E. & Kivelson, S. A. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi systems with a quadratic band crossing. Phys. Rev. Lett. 103, 046811 (2009).
Steward, C. R. W., Fernandes, R. M. & Schmalian, J. Dynamic paramagnon-polarons in altermagnets. Phys. Rev. B 108, 144418 (2023).
Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008).
MAGNDATA: A Collection of Magnetic Structures with Portable cif-type Files. https://www.cryst.ehu.es/magndata/.