Magro, D. O., Sassaki, L. Y. & Chebli, J. M. F. Interaction between diet and genetics in patients with inflammatory bowel disease. World J. Gastroenterol. 30, 1644–1650 (2024).


Google Scholar
 

Deehan, E. C. & Walter, J. The fiber gap and the disappearing gut microbiome: Implications for human nutrition. Trends Endocrinol. Metab. 27, 239–242 (2016).


Google Scholar
 

Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).


Google Scholar
 

Tan, J. K., Macia, L. & Mackay, C. R. Dietary fiber and SCFAs in the regulation of mucosal immunity. J. Allergy Clin. Immunol. 151, 361–370 (2023).


Google Scholar
 

Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 e1321 (2016).


Google Scholar
 

Shen, S. et al. Deficiency of dietary fiber modulates gut microbiota composition, neutrophil recruitment and worsens experimental colitis. Front Immunol. 12, 619366 (2021).


Google Scholar
 

David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).


Google Scholar
 

Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983).


Google Scholar
 

Diaz-Garrido, N., Badia, J. & Baldoma, L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J. Extracell. Vesicles 10, e12161 (2021).


Google Scholar
 

van Niel, G. et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121, 337–349 (2001).


Google Scholar
 

Jiang, L. et al. EpCAM-dependent extracellular vesicles from intestinal epithelial cells maintain intestinal tract immune balance. Nat. Commun. 7, 13045 (2016).


Google Scholar
 

Leoni, G. et al. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J. Clin. Invest 125, 1215–1227 (2015).


Google Scholar
 

Vishnoi, A. & Rani, S. miRNA biogenesis and regulation of diseases: An updated overview. Methods Mol. Biol. 2595, 1–12 (2023).


Google Scholar
 

Wu, Z. et al. Propionic acid driven by the lactobacillus johnsonii culture supernatant alleviates colitis by inhibiting M1 macrophage polarization by modulating the MAPK pathway in mice. J. Agric Food Chem. 71, 14951–14966 (2023).


Google Scholar
 

Liu, B. et al. Critical contributions of protein cargos to the functions of macrophage-derived extracellular vesicles. J. Nanobiotechnol. 21, 352 (2023).


Google Scholar
 

Xu, Y. et al. Crohn’s disease-associated AIEC inhibiting intestinal epithelial cell-derived exosomal let-7b expression regulates macrophage polarization to exacerbate intestinal fibrosis. Gut Microbes 15, 2193115 (2023).


Google Scholar
 

Malmuthuge, N. & Guan, L. L. Noncoding RNAs: Regulatory molecules of host-microbiome crosstalk. Trends Microbiol 29, 713–724 (2021).


Google Scholar
 

Fardi, F. et al. An interplay between non-coding RNAs and gut microbiota in human health. Diab Res Clin. Pr. 201, 110739 (2023).


Google Scholar
 

Shi, H. et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome 9, 223 (2021).


Google Scholar
 

Gomez-Arango, L. F. et al. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9, 189–201 (2018).


Google Scholar
 

Wang, Z. et al. Xylan alleviates dietary fiber deprivation-induced dysbiosis by selectively promoting Bifidobacterium pseudocatenulatum in pigs. Microbiome 9, 227 (2021).


Google Scholar
 

Zhang, Y., Song, M., Fan, J., Guo, X. & Tao, S. Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. J. Anim. Sci. Biotechnol. 15, 149 (2024).


Google Scholar
 

Kim, J. H., Lee, J., Park, J. & Gho, Y. S. Gram-negative and gram-positive bacterial extracellular vesicles. Semin Cell Dev. Biol. 40, 97–104 (2015).


Google Scholar
 

Dean, S. N., Leary, D. H., Sullivan, C. J., Oh, E. & Walper, S. A. Isolation and characterization of Lactobacillus-derived membrane vesicles. Sci. Rep. 9, 877 (2019).


Google Scholar
 

Tong, L. et al. Milk-derived extracellular vesicles protect intestinal barrier integrity in the gut-liver axis. Sci. Adv. 9, eade5041 (2023).


Google Scholar
 

Reif, S. et al. Cow and human milk-derived exosomes ameliorate colitis in DSS murine model. Nutrients 12, 2589 (2020).

Jing, R. et al. Milk-derived extracellular vesicles functionalized with anti-tumour necrosis factor-alpha nanobody and anti-microbial peptide alleviate ulcerative colitis in mice. J. Extracell. Vesicles 13, e12462 (2024).


Google Scholar
 

Sun, T. et al. Comprehensive analysis of dysregulated circular RNAs and construction of a ceRNA network involved in the pathology of Alzheimer’s disease in a 5 x FAD mouse model. Front Aging Neurosci. 14, 1020699 (2022).


Google Scholar
 

Ma X. et al. Akkermansia muciniphila identified as key strain to alleviate gut barrier injury through Wnt signaling pathway. Elife 12, RP92906 (2025).

Wade, H. et al. Akkermansia muciniphila and its membrane protein ameliorates intestinal inflammatory stress and promotes epithelial wound healing via CREBH and miR-143/145. J. Biomed. Sci. 30, 38 (2023).


Google Scholar
 

Song, S. et al. Clostridium butyricum and its metabolites regulate macrophage polarization through miR-146a to antagonize gouty arthritis. J. Adv. Res. S2090-1232, 00354-6 (2025).

Goldie, B. J. et al. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res. 42, 9195–9208 (2014).


Google Scholar
 

Ma, L. et al. Anti-inflammatory effect of clostridium butyricum-derived extracellular vesicles in ulcerative colitis: Impact on host microRNAs expressions and gut microbiome profiles. Mol. Nutr. Food Res. 67, e2200884 (2023).


Google Scholar
 

Westermann, S. et al. Th2-dependent STAT6-regulated genes in intestinal epithelial cells mediate larval trapping during secondary Heligmosomoides polygyrus bakeri infection. PLoS Pathog. 19, e1011296 (2023).


Google Scholar
 

Deng, C. et al. Exosome circATP8A1 induces macrophage M2 polarization by regulating the miR-1-3p/STAT6 axis to promote gastric cancer progression. Mol. Cancer 23, 49 (2024).


Google Scholar
 

Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).


Google Scholar
 

Wang, L. X., Zhang, S. X., Wu, H. J., Rong, X. L. & Guo, J. M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol. 106, 345–358 (2019).


Google Scholar
 

Song, M. et al. Diarrheal microbiota-derived extracellular vesicles drive intestinal homeostasis dysfunction via miR-125b/NF-kappaB-mediated macrophage polarization. Gut Microbes 17, 2541036 (2025).


Google Scholar
 

Tao, S. et al. Extracellular vesicles derived from Lactobacillus johnsonii promote gut barrier homeostasis by enhancing M2 macrophage polarization. J. Adv. Res. 69, 545–563 (2025).


Google Scholar
 

Li, J. et al. Limosilactobacillus mucosae-derived extracellular vesicles modulates macrophage phenotype and orchestrates gut homeostasis in a diarrheal piglet model. NPJ Biofilms Microbiomes 9, 33 (2023).


Google Scholar
 

Tao, S. et al. Lactobacillus johnsonii-derived extracellular vesicles carrying GAPDH protect against ulcerative colitis through modulating macrophage polarization. J. Adv. Res. S2090-1232, 00444–8 (2025).

Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 832–844 (2014).


Google Scholar
 

Honda, M., Kadohisa, M., Yoshii, D., Komohara, Y. & Hibi, T. Directly recruited GATA6 + peritoneal cavity macrophages contribute to the repair of intestinal serosal injury. Nat. Commun. 12, 7294 (2021).


Google Scholar
 

Wijayatunga, N. N. et al. An integrative transcriptomic approach to identify depot differences in genes and microRNAs in adipose tissues from high fat fed mice. Oncotarget 9, 9246–9261 (2018).


Google Scholar
 

Xiong, L. et al. Acute exposure to high-fat diet impairs ILC3 functions and gut homeostasis. Immunity 58, 1185–1200 e1188 (2025).


Google Scholar
 

Chaves-Perez, A. et al. Metabolic adaptations direct cell fate during tissue regeneration. Nature 643, 468–477 (2025).


Google Scholar
 

Pi, Y. et al. Gut microbiota-derived ursodeoxycholic acid alleviates low birth weight-induced colonic inflammation by enhancing M2 macrophage polarization. Microbiome 11, 19 (2023).


Google Scholar
 

Shen, Q. et al. Extracellular vesicle miRNAs promote the intestinal microenvironment by interacting with microbes in colitis. Gut Microbes 14, 2128604 (2022).


Google Scholar
 

Tao, S., Bai, Y., Li, T., Li, N. & Wang, J. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage. FASEB J. 33, 9897–9912 (2019).


Google Scholar
 

Wu, X. et al. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G295–G306 (2008).


Google Scholar
Â