Bonham V. Oreochromis niloticus (Nile tilapia). Oxfordshire, UK: CABI Compendium; Wallingford; 2022.
El-Sayed AFM, Fitzsimmons K. From Africa to the world—The journey of nile tilapia. Reviews Aquaculture. 2023;15:6–21.
Haenen OL, Dong HT, Hoai TD, Crumlish M, Karunasagar I, Barkham T, et al. Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. Rev Aquacult. 2023;15:154–85.
Abdallah ESH, Metwally WGM, Abdel-Rahman MAM, Albano M, Mahmoud MM. Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus): a review. Biology. 2024;13(11):914.
Sudpraseart C, Wang PC, Chen SC. Phenotype, genotype and pathogenicity of Streptococcus agalactiae isolated from cultured tilapia (Oreochromis spp.) in Taiwan. J Fish Dis. 2021;44(6):747–56.
Rahman MM, Rahman MA, Monir MS, Haque ME, Siddique MP, Khasruzzaman A, et al. Isolation and molecular detection of Streptococcus agalactiae from popped eye disease of cultured tilapia and Vietnamese Koi fishes in Bangladesh. J Adv Veterinary Anim Res. 2021;8(1):14.
Preenanka R, Safeena MP, Vidhya B, Sumithra T. Impact of salinity on Streptococcus agalactiae and health parameters of Oreochromis niloticus during streptococcosis outbreaks. The Microbe. 2024;5:100167.
Rodkhum C, Kayansamruaj P, Pirarat N. Effect of water temperature on susceptibility to Streptococcus agalactiae serotype Ia infection in nile tilapia (Oreochromis niloticus). Thai J Vet Med. 2011;41(3):309–14.
Kayansamruaj P, Pirarat N, Katagiri T, Hirono I, Rodkhum C. Molecular characterization and virulence gene profiling of pathogenic Streptococcus agalactiae populations from tilapia (Oreochromis sp.) farms in Thailand. J Vet Diagn Invest. 2014;26(4):488–95.
Alazab A, Sadat A, Younis G. Prevalence, antimicrobial susceptibility, and genotyping of Streptococcus agalactiae in tilapia fish (Oreochromis niloticus) in Egypt. J Adv Vet Anim Res. 2022;9(1):95.
Abdallah ESH, Metwally WGM, Bayoumi SALH, Abdel Rahman MAM, Mahmoud MM. Isolation and characterization of Streptococcus agalactiae inducing mass mortalities in cultured nile tilapia (Oreochromis niloticus) with trials for disease control using zinc oxide nanoparticles and ethanolic leaf extracts of some medicinal plants. BMC Vet Res. 2024;20(1):468.
Ghetas H, Neiana A, Khalil R, Am H, Khallaf M. Streptococcus agalactiae isolation and characterization in Nile tilapia (Oreochromis niloticus) with histopathological studies. Journal of Current Veterinary Research. 2021;3(1):70–9.
Sheehan B, Labrie L, Lee Y, Wong F, Chan J, Komar C, et al. Streptococcosis in tilapia-vaccination effective against main strep species. Global Aquaculture Advocate. 2009;5:72–4.
Mian G, Godoy D, Leal C, Yuhara T, Costa G, Figueiredo H. Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia. Vet Microbiol. 2009;136(1–2):180–3.
Buller NB. Bacteria and fungi from fish and other aquatic animals: a practical identification manual. Cabi; Wallingford, Oxfordshire, UK, 2014.
Lancefield RC. A serological differentiation of specific types of bovine hemolytic Streptococci (group B). J Exp Med. 1934;59(4):441.
Doran KS, Liu GY, Nizet V. Group B streptococcal β-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest. 2003;112(5):736–44.
Liao P-C, Tsai Y-L, Chen Y-C, Wang P-C, Liu S-C, Chen S-C. Analysis of Streptococcal infection and correlation with climatic factors in cultured tilapia Oreochromis spp. in Taiwan. Appl Sci. 2020;10(11):4018.
Kayansamruaj P, Pirarat N, Kondo H, Hirono I, Rodkhum C. Genomic comparison between pathogenic Streptococcus agalactiae isolated from Nile tilapia in Thailand and fish-derived ST7 strains. Infect Genet Evol. 2015;36:307–14.
Delannoy CM, Zadoks RN, Crumlish M, Rodgers D, Lainson FA, Ferguson H, et al. Genomic comparison of virulent and non-virulent S treptococcus agalactiae in fish. J Fish Dis. 2016;39(1):13–29.
Lang S, Palmer M. Characterization of Streptococcus agalactiae CAMP factor as a pore-forming toxin. J Biol Chem. 2003;278(40):38167–73.
Hensler ME, Quach D, Hsieh C-J, Doran KS, Nizet V. CAMP factor is not essential for systemic virulence of group B Streptococcus. Microb Pathog. 2008;44(1):84–8.
Algammal AM, Mabrok M, Alfifi KJ, Alghamdi S, Almanzalawi EA, Alqahtani TM et al. The prevalence, antimicrobial susceptibility, virulence, and antimicrobial resistance genes of multidrug-resistant vibrio parahaemolyticus recovered from Oreochromis niloticus. Aquacult Int. 2024;32:1–19.
Eid HI, Algammal AM, Nasef SA, Elfeil WK, Mansour GH. Genetic variation among avian pathogenic E. coli strains isolated from broiler chickens. Asian J Anim Vet Adv. 2016;11(6):350–6.
Eid HM, Algammal AM, Elfeil WK, Youssef FM, Harb SM, Abd-Allah EM. Prevalence, molecular typing, and antimicrobial resistance of bacterial pathogens isolated from ducks. Vet World. 2019;12(5):677.
Ibrahim GA, Mabrok M, Alfifi KJ, Alatawy M, Al-otaibi AS, Alenzi AM, et al. Pathogenicity, resistance patterns, virulence traits, and resistance genes of re-emerging extensively drug-resistant (XDR) Aeromonas veronii in Oreochromis niloticus. Aquacult Int. 2024;32(5):6987–7006.
Algammal AM, Alfifi KJ, Mabrok M, Alatawy M, Abdel-Moneam DA, Alghamdi S et al. Newly emerging MDR B. cereus in Mugil seheli as the first report commonly harbor nhe, hbl, cyt K, and pc-Plc virulence genes and Bla 1, Bla 2, tet A, and erm a resistance genes. Infect Drug Resist. 2022;15:2167–85.
Algammal AM, Mabrok M, Ezzat M, Alfifi KJ, Esawy AM, Elmasry N, et al. Prevalence, antimicrobial resistance (AMR) pattern, virulence determinant and AMR genes of emerging multi-drug resistant Edwardsiella tarda in Nile tilapia and African catfish. Aquaculture. 2022;548:737643.
Enany ME, Algammal AM, Shagar GI, Hanora AM, Elfeil WK, Elshaffy NM. Molecular typing and evaluation of Sidr honey inhibitory effect on virulence genes of MRSA strains isolated from catfish in Egypt. Pak J Pharm Sci. 2018;31(5):1865–70.
Mabrok M, Algammal AM, El-Tarabili RM, Dessouki AA, ElBanna NI, Abd-Elnaby M, et al. Enterobacter cloacae as a re-emerging pathogen affecting mullets (Mugil spp.): pathogenicity testing, LD50, antibiogram, and encoded antimicrobial resistance genes. Aquaculture. 2024;583:740619.
Hassan MA, Abdel-Naeim NS, Mabrok M, Dessouki AA, Hassan AM. Isolation and identification of Enterococcus faecalis from cultured Oreochromis niloticus and Mugil cephalus with a special emphasis on a possible integrated control strategy. Aquac Res. 2022;53(16):5521–35.
Elgendy MY, Ali SE, Abbas WT, Algammal AM, Abdelsalam M. The role of marine pollution on the emergence of fish bacterial diseases. Chemosphere. 2023;344:140366.
Algammal AM, Mabrok M, Alfifi KJ, Alghamdi S, Alammari DM, Ghobashy MO, et al. The evolving multidrug-resistant V. alginolyticus in sea bream commonly harbored collagenase, trh, and Tlh virulence genes and Sul 1, Bla TEM, Aad A, tet A, Bla OXA, and tet B or tet M resistance genes. Aquacult Int. 2025;33(2):134.
Algammal AM, Elsayed ME, Hashem HR. Molecular and HPLC-based approaches for detection of aflatoxin B1 and Ochratoxin A released from toxigenic Aspergillus species in processed meat. BMC Microbiol. 2021;21(82):1–10. https://doi.org/10.1186/s12866-021-02144-y.
Underwood W, Anthony R. AVMA guidelines for the euthanasia of animals: 2020 edition. Retrieved March. 2020;2013(30):2020–1.
Austin B, Austin D. Characteristics of the pathogens: Gram-negative bacteria. Bacterial Fish Pathogens: Dis Farmed Wild Fish. 2007:81–150.
Barrow G, Feltham R. Cowan and Steel’s manual for identification of medical bacteria. 3rd, editor Cambridge press. Cambridge, UK, 2003.
Jin T, Brefo-Mensah E, Fan W, Zeng W, Li Y, Zhang Y, et al. Crystal structure of the Streptococcus agalactiae CAMP factor provides insights into its membrane-permeabilizing activity. J Biol Chem. 2018;293(30):11867–77.
Mashouf RY, Mousavi SM, Rabiee S, Alikhani MY, Arabestani MR. Direct identification of Streptococcus agalactiae in vaginal colonization in pregnant women using polymerase chain reaction. J Compr Pediatr. 2014;5(4):e23339.
Bergseng H, Bevanger L, Rygg M, Bergh K. Real-time PCR targeting the Sip gene for detection of group B Streptococcus colonization in pregnant women at delivery. J Med Microbiol. 2007;56(2):223–8.
Shome BR, Bhuvana M, Mitra SD, Krithiga N, Shome R, Velu D, et al. Molecular characterization of Streptococcus agalactiae and Streptococcus uberis isolates from bovine milk. Trop Anim Health Prod. 2012;44(8):1981–92.
Krishnaveni N, Isloor S, Hegde R, Suryanarayanan V, Rathnma D, Veeregowda B, et al. Rapid detection of virulence associated genes in Streptococcal isolates from bovine mastitis. Afr J Microbiol Res. 2014;8:2245–54.
Dmitriev A, Shakleina E, Tkáčiková L, Mikula I, Totolian A. Genetic heterogeneity of the pathogenic potentials of human and bovine group B streptococci. Folia Microbiol. 2002;47:291–5.
Duran N, Ozer B, Duran GG, Onlen Y, Demir C. Antibiotic resistance genes & susceptibility patterns in Staphylococci. Indian J Med Res. 2012;135(3):389–96.
Mosleh MN, Gharibi M, Alikhani MY, Saidijam M, Kalantarian G. Antimicrobial susceptibilities and distribution of resistance genes for β-lactams in Streptococcus pneumoniae isolated in Hamadan. Jundishapur J Microbiol. 2014;7(10):e12714.
Lina G, Quaglia A, Reverdy M-E, Leclercq R, Vandenesch Fo, Etienne J. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among Staphylococci. Antimicrob Agents Chemother. 1999;43(5):1062–6.
Schlegelova J, Vlkova H, Babak V, Holasova M, Jaglic Z, Stosova T, et al. Resistance to erythromycin of Staphylococcus spp. isolates from the food chain. Veterinarni med. 2008;53(6):307.
Rato MG, Bexiga R, Florindo C, Cavaco LM, Vilela CL, Santos-Sanches I. Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis. Vet Microbiol. 2013;161(3–4):286–94.
Ng L-K, Martin I, Alfa M, Mulvey M. Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes. 2001;15(4):209–15.
CLSI. Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic Animals. CLSI guideline VET04. 3rd ed. Wayne, Pennsylvania: Clinical Laboratory Standards Institute; 2020.
Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas M, Giske C, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.
Krumperman PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol. 1983;46(1):165–70.
Zhang D, Ke X, Liu Z, Cao J, Su Y, Lu M, et al. Capsular polysaccharide of Streptococcus agalactiae is an essential virulence factor for infection in Nile tilapia (Oreochromis niloticus Linn). J Fish Dis. 2019;42(2):293–302.
Kannika K, Pisuttharachai D, Srisapoome P, Wongtavatchai J, Kondo H, Hirono I, et al. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR. J Appl Microbiol. 2017;122(6):1497–507.
Mohamed A, El Asely A, Abdel Gwad E, Abbass A, Shaheen A. Prevalence of streptococcosis-related mortalities in farmed nile tilapia (Oreochromis niloticus) at different life stages. Egypt J Vet Sci. 2023;54(5):949–64.
Du J, Cao L, Jia R, Gu Z, He Q, Xu P, et al. Analysis of Streptococcus agalactiae-induced liver injury in tilapia (Oreochromis niloticus). Aquac Res. 2020;51(4):1398–405.
Al-Harbi AH. Phenotypic and genotypic characterization of Streptococcus agalactiae isolated from hybrid tilapia (Oreochromis niloticus× O. aureus). Aquaculture. 2016;464:515–20.
Duodu S, Ayiku AN, Adelani AA, Daah DA, Amoako EK, Jansen MD, et al. Serotype distribution, virulence and antibiotic resistance of Streptococcus agalactiae isolated from cultured tilapia Oreochromis niloticus in Lake Volta, Ghana. Dis Aquat Organ. 2024;158:27–36.
Kelany N, Abdel-Mohsein H, Kotb S, Ismail AE-M. Multiple antibiotic resistant Streptococcus agalactiae and Streptococcus iniae in nile tilapia aquaculture. J Adv Vet Res. 2024;14(1):180–6.
El-Sayed A-FM. Tilapia culture. CABI publishing; Wallingford, Oxfordshire, UK, 2006.
Saleh HA, Sabry NM, Abd Al-Razik M, Mohamed FA, Ibrahim MS. Pathogenicity and characterization of streptococcosis in Egyptian Nile tilapia (Oreochromis niloticus) in Kafr Elshikh Governorate. Alexandria J Vet Sci. 2017;52(1):173.
Eissa AE, Attia MM, Elgendy MY, Ismail GA, Sabry NM, Prince A, et al. Streptococcus, Centrocestus formosanus and Myxobolus tilapiae concurrent infections in farmed Nile tilapia (Oreochromis niloticus). Microb Pathog. 2021;158:105084.
Amal M, Zamri-Saad M. Streptococcosis in tilapia (Oreochromis niloticus): a review. 2011.
Ferrari NA, Favero LM, Facimoto CT, Dall Agnol AM, Gaeta ML, de Oliveira TES, et al. Clinical and histopathological evolution of acute intraperitoneal infection by Streptococcus agalactiae serotypes Ib and III in nile tilapia. Fishes (MDPI AG). 2024;9(7):1–20.
Zamri-Saad M, Amal M, Siti-Zahrah A. Pathological changes in red tilapias (Oreochromis spp.) naturally infected by Streptococcus agalactiae. J Comp Pathol. 2010;143(2–3):227–9.
Pereira U, Mian G, Oliveira I, Benchetrit L, Costa G, Figueiredo H. Genotyping of Streptococcus agalactiae strains isolated from fish, human and cattle and their virulence potential in nile tilapia. Vet Microbiol. 2010;140(1–2):186–92.
Suanyuk N, Kong F, Ko D, Gilbert GL, Supamattaya K. Occurrence of rare genotypes of Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and nile tilapia O. niloticus in Thailand—relationship to human isolates? Aquaculture. 2008;284(1–4):35–40.
Chen C, Chao C, Bowser P. Comparative histopathology of Streptococcus iniae and Streptococcus agalactiae-infected tilapia. Bulletin-European Association Fish Pathologists. 2007;27(1):2.
Hernández E, Figueroa J, Iregui C. Streptococcosis on a red tilapia, Oreochromis sp., farm: a case study. J Fish Dis. 2009;32(3):247–52.
Su Y, Feng J, Liu C, Li W, Xie Y, Li A. Dynamic bacterial colonization and microscopic lesions in multiple organs of tilapia infected with low and high pathogenic Streptococcus agalactiae strains. Aquaculture. 2017;471:190–203.
Makarewicz O, Stein C, Pfister W, Löffler B, Pletz M. Identification Methods–An Overview. Modern Techniques for Pathogen Detection. 2015:19–53.
Jantrakajorn S, Maisak H, Wongtavatchai J. Comprehensive investigation of streptococcosis outbreaks in cultured Nile tilapia, Oreochromis niloticus, and red tilapia, Oreochromis sp., of Thailand. J World Aquacult Soc. 2014;45(4):392–402.
Chu C, Huang P-Y, Chen H-M, Wang Y-H, Tsai I-A, Lu C-C, et al. Genetic and pathogenic difference between Streptococcus agalactiae serotype Ia fish and human isolates. BMC Microbiol. 2016;16:1–9.
Emam W, El-Rewiny MN, Abou Zaid AA, El‐Tras WF, Mohamed RA. Trends in the use of feed and water additives in Egyptian tilapia culture. Aquac Res. 2022;53(9):3331–6.
Ferri G, Lauteri C, Vergara A. Antibiotic resistance in the finfish aquaculture industry: a review. Antibiotics. 2022;11(11):1574.
Muthanna A, Desa MNM, Alsalemi W, Abd Aziza NAL, Dzaraly ND, Baharin NHZ et al. Phenotypic and genotypic comparison between pathogenic group B Streptococcus revealed the possibility of cross transmission between fish and human isolates in Malaysia. 2022.
Mustaev A, Malik M, Zhao X, Kurepina N, Luan G, Oppegard LM, et al. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding. J Biol Chem. 2014;289(18):12300–12.
Syuhada R, Zamri-Saad M, Ina-Salwany M, Mustafa M, Nasruddin N, Desa M, et al. Molecular characterization and pathogenicity of Streptococcus agalactiae serotypes Ia ST7 and III ST283 isolated from cultured red hybrid tilapia in Malaysia. Aquaculture. 2020;515:734543.
Lin FP-Y, Lan R, Sintchenko V, Gilbert GL, Kong F, Coiera E. Computational bacterial genome-wide analysis of phylogenetic profiles reveals potential virulence genes of Streptococcus agalactiae. PLoS ONE. 2011;6(4):e17964.
Legario FS, Choresca CH Jr, Turnbull JF, Crumlish M. Isolation and molecular characterization of Streptococcal species recovered from clinical infections in farmed Nile tilapia (Oreochromis niloticus) in the Philippines. J Fish Dis. 2020;43(11):1431–42.
Dangwetngam M, Suanyuk N, Kong F, Phromkunthong W. Serotype distribution and antimicrobial susceptibilities of Streptococcus agalactiae isolated from infected cultured tilapia (Oreochromis niloticus) in Thailand: nine-year perspective. J Med Microbiol. 2016;65(3):247–54.
Meroni G, Sora VM, Martino PA, Sbernini A, Laterza G, Zaghen F, et al. Epidemiology of antimicrobial resistance genes in Streptococcus agalactiae sequences from a public database in a one health perspective. Antibiotics. 2022;11(9):1236.
Higuera-Llantén S, Vásquez-Ponce F, Barrientos-Espinoza B, Mardones FO, Marshall SH, Olivares-Pacheco J. Extended antibiotic treatment in salmon farms select multiresistant gut bacteria with a high prevalence of antibiotic resistance genes. PLoS ONE. 2018;13(9):e0203641.
Tamminen M, Karkman A, Lohmus A, Muziasari WI, Takasu H, Wada S, et al. Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure. Environ Sci Technol. 2011;45(2):386–91.
Zhao Y, Shao W, Wang F, Ma J, Chen H, Wang S, et al. Antimicrobial resistance and virulence genes of Streptococcus agalactiae isolated from mastitis milk samples in China. J Vet Res. 2022;66(4):581.
Wang F, Xian X-R, Guo W-L, Zhong Z-H, Wang S-F, Cai Y, et al. Baicalin attenuates Streptococcus agalactiae virulence and protects tilapia (Oreochromis niloticus) from group B streptococcal infection. Aquaculture. 2020;516:734645.
Maisey HC, Doran KS, Nizet V. Recent advances in understanding the molecular basis of group B Streptococcus virulence. Expert Rev Mol Med. 2008;10:e27.
Laith A, Ambak MA, Hassan M, Sheriff SM, Nadirah M, Draman AS, et al. Molecular identification and histopathological study of natural Streptococcus agalactiae infection in hybrid tilapia (Oreochromis niloticus). Vet World. 2017;10(1):101.