Traub-Dargatz J, Salman M, Voss J. Medical problems of adult horses, as ranked by equine practitioners. J Am Vet Med Assoc. 1991;198(10):1745–7.

Article 
CAS 
PubMed 

Google Scholar
 

Hurtgen JP. Pathogenesis and treatment of endometritis in the mare: a review. Theriogenology. 2006;66:560–6. https://doi.org/10.1016/j.theriogenology.2006.04.006.

Article 
CAS 
PubMed 

Google Scholar
 

Riddle WT, LeBlanc MM, Stromberg AJ. Relationships between uterine culture, cytology and pregnancy rates in a Thoroughbred practice. Theriogenology. 2007;68:395–402. https://doi.org/10.1016/j.theriogenology.2007.05.050.

Article 
CAS 
PubMed 

Google Scholar
 

LeBlanc MM, Causey RC. Clinical and subclinical endometritis in the mare: both threats to fertility. Reprod Domest Anim. 2009;44(Suppl 3):10–22. https://doi.org/10.1111/j.1439-0531.2009.01485.x.

Article 
PubMed 

Google Scholar
 

Morris LH, McCue P, Aurich C. Equine endometritis: a review of challenges and new approaches. Reproduction. 2020;160(5):R95-110. https://doi.org/10.1530/REP-19-0478.

Article 
CAS 

Google Scholar
 

Köhne M, Hegger A, Tönissen A, Hofbauer L, Görgens A, Sieme H. Success of different therapies for bacterial endometritis in stud farm practice. J Equine Vet Sci. 2024;133: 105009. https://doi.org/10.1016/j.jevs.2024.105009.

Article 
PubMed 

Google Scholar
 

Canisso IF, Segabinazzi LG, Fedorka CE. Persistent breeding-induced endometritis in mares—a multifaceted challenge: from clinical aspects to Immunopathogenesis and pathobiology. Int J Mol Sci. 2020;21(4): 1432. https://doi.org/10.3390/ijms21041432.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Klug E, Sieme H, Peters E. Fundamentals of hygiene to be used for stallions in an instrumental artificial insemination. Tierarztl Prax Ausg G Grosstiere Nutztiere. 1998;26(4):218–24.

CAS 
PubMed 

Google Scholar
 

Cerny KL, Little TV, Coleman RJ, Ball BA, Troedsson MH, Squires EL. Variations of potentially pathogenic bacteria found on the external genitalia of stallions during the breeding season. J Equine Vet Sci. 2015;35(2):170–3. https://doi.org/10.1016/j.jevs.2014.12.007.

Article 

Google Scholar
 

Westgate S, Percival S, Knottenbelt D, Clegg P, Cochrane C. Microbiology of equine wounds and evidence of bacterial biofilms. Vet Microbiol. 2011;150(1–2):152–9. https://doi.org/10.1016/j.vetmic.2011.01.003.

Article 
CAS 
PubMed 

Google Scholar
 

Scholtz M, Guthrie AJ, Newton R, Schulman ML. Review of Pseudomonas aeruginosa and Klebsiella pneumoniae as venereal pathogens in horses. Equine Vet J. 2024. https://doi.org/10.1111/evj.14201.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, Han C, Bisignano C, Rao P, Wool E. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022. 2022;399(10325):629–55. https://doi.org/10.1016/S0140-6736(21)02724-0.

Article 
CAS 

Google Scholar
 

Davis HA, Stanton MB, Thungrat K, Boothe DM. Uterine bacterial isolates from mares and their resistance to antimicrobials: 8,296 cases (2003–2008). J Am Vet Med Assoc. 2013;242(7):977–83. https://doi.org/10.2460/javma.242.7.977.

Article 
CAS 
PubMed 

Google Scholar
 

Köhne M, Hegger A, Tönissen A, Heusinger A, Hader C, Görgens A, Sieme H. Frequency of potentially pathogenic bacterial and fungal isolates among 28,887 endometrial samples from mares, with an emphasis on multi-drug resistant bacteria in Germany (2018–2022). J Equine Vet Sci. 2024;133: 105008. https://doi.org/10.1016/j.jevs.2024.105008.

Article 
PubMed 

Google Scholar
 

Frontoso R, De Carlo E, Pasolini M, van der Meulen K, Pagnini U, Iovane G, De Martino L. Retrospective study of bacterial isolates and their antimicrobial susceptibilities in equine Uteri during fertility problems. Res Vet Sci. 2008;84(1):1–6. https://doi.org/10.1016/j.rvsc.2007.02.008.

Article 
CAS 
PubMed 

Google Scholar
 

Rathbone P, Arango-Sabogal JC, De Mestre AM, Scott CJ. Antimicrobial resistance of endometrial bacterial isolates collected from UK thoroughbred mares between 2014 and 2020. Vet Rec. 2023;192(5): e2591. https://doi.org/10.1002/vetr.2591.

Article 
PubMed 

Google Scholar
 

Ferris R, Wittstock S, McCue P, Borlee B. Evaluation of biofilms in gram-negative bacteria isolated from the equine uterus. J Equine Vet Sci. 2014;1(34):121.

Article 

Google Scholar
 

Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, Engebretsen IL, Bayles KW, Horswill AR, Kielian T. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol. 2011;186(11):6585–96. https://doi.org/10.4049/jimmunol.1002794.

Article 
CAS 
PubMed 

Google Scholar
 

Mah T-FC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34–9. https://doi.org/10.1016/s0966-842x(00)01913-2.

Article 
CAS 
PubMed 

Google Scholar
 

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22. https://doi.org/10.1126/science.284.5418.1318.

Article 
CAS 
PubMed 

Google Scholar
 

Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–8. https://doi.org/10.1016/s0140-6736(01)05321-1.

Article 
CAS 
PubMed 

Google Scholar
 

Beehan DP, Wolfsdorf K, Elam J, Krekeler N, Paccamonti D, Lyle SK. The evaluation of biofilm-forming potential of Escherichia coli collected from the equine female reproductive tract. J Equine Vet Sci. 2015;35(11–12):935–9. https://doi.org/10.1016/j.jevs.2015.08.018.

Article 

Google Scholar
 

Strange JE, Leekitcharoenphon P, Møller FD, Aarestrup FM. Metagenomics analysis of bacteriophages and antimicrobial resistance from global urban sewage. Sci Rep. 2021;11(1): 1600. https://doi.org/10.1038/s41598-021-80990-6.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rohwer F, Segall AM. A century of phage lessons. Nature. 2015;528(7580):46–7. https://doi.org/10.1038/528046a.

Article 
CAS 
PubMed 

Google Scholar
 

Salmond GP, Fineran PC. A century of the phage: past, present and future. Nat Rev Microbiol. 2015;13(12):777–86. https://doi.org/10.1038/nrmicro3564.

Article 
CAS 
PubMed 

Google Scholar
 

Van Nieuwenhuyse B, Van der Linden D, Chatzis O, Lood C, Wagemans J, Lavigne R, Schroven K, Paeshuyse J, De Magnee C, Sokal E. Bacteriophage-antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler. Nat Commun. 2022;13(1): 5725. https://doi.org/10.1038/s41467-022-33294-w.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Eskenazi A, Lood C, Wubbolts J, Hites M, Balarjishvili N, Leshkasheli L, Askilashvili L, Kvachadze L, van Noort V, Wagemans J. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat Commun. 2022;13(1):302. https://doi.org/10.1038/s41467-021-27656-z.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kebriaei R, Lev KL, Shah RM, Stamper KC, Holger DJ, Morrisette T, Kunz Coyne AJ, Lehman SM, Rybak MJ. Eradication of biofilm-mediated methicillin-resistant Staphylococcus aureus infections in vitro: bacteriophage-antibiotic combination. Microbiol Spectr. 2022;10: e00411–22. https://doi.org/10.1128/spectrum.00411-22.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1(2):111–4. https://doi.org/10.4161/bact.1.2.14590.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Furusawa T, Iwano H, Hiyashimizu Y, Matsubara K, Higuchi H, Nagahata H, Niwa H, Katayama Y, Kinoshita Y, Hagiwara K. Phage therapy is effective in a mouse model of bacterial equine keratitis. Appl Environ Microbiol. 2016;82(17):5332–9. https://doi.org/10.1128/AEM.01166-16.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang X, Ji Y, Su J, Xue Y, Xi H, Wang Z, Bi L, Zhao R, Zhang H, Yang L. Therapeutic efficacy of phage PIZ SAE-01E2 against abortion caused by Salmonella enterica serovar abortusequi in mice. Appl Environ Microbiol. 2020;86(22):e01366–01320. https://doi.org/10.1128/AEM.01366-20.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shakeri G, Hammerl JA, Jamshidi A, Ghazvini K, Rohde M, Szabo I, Kehrenberg C, Plötz M, Kittler S. The lytic siphophage vB_StyS-LmqsSP1 reduces the number of Salmonella enterica serovar typhimurium isolates on chicken skin. Appl Environ Microbiol. 2021;87(24):e01424-01421. https://doi.org/10.1128/AEM.01424-21.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Köhne M, Hüsch R, Tönissen A, Schmidt M, Müsken M, Böttcher D, Hirnet J, Plötz M, Kittler S, Sieme H. Isolation and characterization of bacteriophages specific to Streptococcus equi subspecies zooepidemicus and evaluation of efficacy ex vivo. Front Microbiol. 2024;15:1448958. https://doi.org/10.3389/fmicb.2024.1448958.

Article 
PubMed 
PubMed Central 

Google Scholar
 

The Galaxy Community. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 2022;50:W345–51. https://doi.org/10.1093/nar/gkac247.

Article 
CAS 

Google Scholar
 

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013:13033997. ArXiv Preprint arXiv. https://doi.org/10.48550/arXiv.1303.3997.

Wishart DS, Han S, Saha S, Oler E, Peters H, Grant J, Stothard P, Gautam V. PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res. 2023;5(W1):W443–50. https://doi.org/10.1093/nar/gkad382.

Article 
CAS 

Google Scholar
 

Garneau JR, Depardieu F, Fortier L-C, Bikard D, Monot M. Phageterm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep. 2017;7:8292. https://doi.org/10.1038/s41598-017-07910-5.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boeckman J, Liu M, Ramsey J, Gill J. Phage DNA extraction, genome assembly, and genome closure. Methods Mol Biol. 2024;2738:125–44. https://doi.org/10.1007/978-1-0716-3549-0_8.

Article 
CAS 
PubMed 

Google Scholar
 

Dreiseikelmann B, Bunk B, Spröer C, Rohde M, Nimtz M, Wittmann J. Characterization and genome comparisons of three achromobacter phages of the family siphoviridae. Arch Virol. 2017;162:2191–201. https://doi.org/10.1007/s00705-017-3347-8.

Article 
CAS 
PubMed 

Google Scholar
 

Peh E, Szott V, Reichelt B, Friese A, Rösler U, Plötz M, Kittler S. Bacteriophage cocktail application for Campylobacter mitigation-from in vitro to in vivo. BMC Microbiol. 2023;23(1):209. https://doi.org/10.1186/s12866-023-02963-1.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Elgamoudi BA, Korolik V. A guideline for assessment and characterization of bacterial biofilm formation in the presence of inhibitory compounds. Bio Protoc. 2023;13(21):e4866. https://doi.org/10.21769/BioProtoc.4866.

Li M, Wang H, Chen L, Guo G, Li P, Ma J, Chen R, Du H, Liu Y, Zhang W. Identification of a phage-derived depolymerase specific for KL47 capsule of Klebsiella pneumoniae and its therapeutic potential in mice. Virol Sin. 2022;37(4):538–46.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Uskudar-Guclu A, Unlu S, Salih-Dogan H, Yalcin S, Basustaoglu A. Biological and genomic characteristics of three novel bacteriophages and a phage-plasmid of Klebsiella pneumoniae. Can J Microbiol. 2024;70(6):213–25.

Article 
CAS 
PubMed 

Google Scholar
 

Fatima R, Hynes AP. Temperate phage-antibiotic synergy is widespread—extending to Pseudomonas—but varies by phage, host strain, and antibiotic pairing. mBio. 2025;16: e02559–24. https://doi.org/10.1128/mbio.02559-24.

Article 
PubMed 

Google Scholar
 

Gu Liu C, Green SI, Min L, Clark JR, Salazar KC, Terwilliger AL, Kaplan HB, Trautner BW, Ramig RF, Maresso AW. mBio. Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. 2020, 11(4):https://doi.org/10.1128/mbio. 01462 – 01420. 10.1128/mBio.01462-20.

Alves DR, Perez-Esteban P, Kot W, Bean J, Arnot T, Hansen L, Enright MC, Jenkins ATA. A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol. 2016;9(1):61–74. https://doi.org/10.1111/1751-7915.12316.

Article 
CAS 
PubMed 

Google Scholar
 

Pires D, Sillankorva S, Faustino A, Azeredo J. Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res Microbiol. 2011;162(8):798–806. https://doi.org/10.1016/j.resmic.2011.06.010.

Article 
CAS 
PubMed 

Google Scholar
 

Oliveira VC, Bim FL, Monteiro RM, Macedo AP, Santos ES, Silva-Lovato CH, Paranhos HF, Melo LD, Santos SB, Watanabe E. Identification and characterization of new bacteriophages to control multidrug-resistant Pseudomonas aeruginosa biofilm on endotracheal tubes. Front Microbiol. 2020;11: 580779. https://doi.org/10.3389/fmicb.2020.580779.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zaki BM, Fahmy NA, Aziz RK, Samir R, El-Shibiny A. Characterization and comprehensive genome analysis of novel bacteriophage, vB_Kpn_ZCKp20p, with lytic and anti-biofilm potential against clinical multidrug-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol. 2023;13: 1077995. https://doi.org/10.3389/fcimb.2023.1077995.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Balcão VM, Moreli FC, Silva EC, Belline BG, Martins LF, Rossi FP, Pereira C, Vila MM, da Silva AM. Isolation and molecular characterization of a novel lytic bacteriophage that inactivates MDR Klebsiella pneumoniae strains. Pharmaceutics. 2022;14(7):1421. https://doi.org/10.3390/pharmaceutics14071421

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zurabov F, Zhilenkov E. Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virol J. 2021;18:1–20. https://doi.org/10.1186/s12985-020-01485-w.

Article 
CAS 

Google Scholar
 

Kęsik-Szeloch A, Drulis-Kawa Z, Weber-Dąbrowska B, Kassner J, Majkowska-Skrobek G, Augustyniak D, Łusiak-Szelachowska M, Żaczek M, Górski A, Kropinski AM. Characterising the biology of novel lytic bacteriophages infecting multidrug resistant Klebsiella pneumoniae. Virol J. 2013;10:1–12. https://doi.org/10.1186/1743-422X-10-100.

Article 
CAS 

Google Scholar
 

Ackermann H-W, Prangishvili D. Prokaryote viruses studied by electron microscopy. Arch Virol. 2012;157:1843–9. https://doi.org/10.1007/s00705-012-1383-y.

Article 
CAS 
PubMed 

Google Scholar
 

Harper DR. Introduction to bacteriophages. In: Harper DR, Abedon ST, Burrowes BH, McConville ML, editors. Bacteriophages: Biology, Technology, Therapy. Switzerland: Springer Nature; 2021(1):3–16. https://doi.org/10.1007/978-3-319-41986-2_48.

Hsieh P-F, Lin H-H, Lin T-L, Chen Y-Y, Wang J-T. Two T7-like bacteriophages, K5-2 and K5-4, each encodes two capsule depolymerases: isolation and functional characterization. Sci Rep. 2017;7(1):4624. https://doi.org/10.1038/s41598-017-04644-2.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shi Y, Chen Y, Yang Z, Zhang Y, You B, Liu X, Chen P, Liu M, Zhang C, Luo X. Characterization and genome sequencing of a novel T7-like lytic phage, kpssk3, infecting carbapenem-resistant Klebsiella pneumoniae. Arch Virol. 2020;165:97–104. https://doi.org/10.1007/s00705-019-04447-y.

Article 
CAS 
PubMed 

Google Scholar
 

Gill JJ, Hyman P. Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol. 2010;11(1):2–14. https://doi.org/10.2174/138920110790725311.

Article 
CAS 
PubMed 

Google Scholar
 

Sharma S, Datta S, Chatterjee S, Dutta M, Samanta J, Vairale MG, Gupta R, Veer V, Dwivedi SK. Isolation and characterization of a lytic bacteriophage against Pseudomonas aeruginosa. Sci Rep. 2021;11(1):19393. https://doi.org/10.1038/s41598-021-98457-z.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dennehy JJ, Abedon ST. Phage infection and lysis. In: Harper DR, Abedon ST, Burrowes BH, McConville ML, editors: Bacteriophages: Biology, Technology, Therapy. Switzerland: Springer Nature; 2021(1):341–383. https://doi.org/10.1007/978-3-319-40598-8_53-1.

Vashisth M, Yashveer S, Anand T, Virmani N, Bera BC, Vaid RK. Antibiotics targeting bacterial protein synthesis reduce the lytic activity of bacteriophages. Virus Res. 2022;321: 198909. https://doi.org/10.1016/j.virusres.2022.198909.

Article 
CAS 
PubMed 

Google Scholar
 

Chaves BJ, Tadi P. Gentamicin. Treasure Island, Florida: StatPearls Publishing; 2020.


Google Scholar
 

Wróbel A, Arciszewska K, Maliszewski D, Drozdowska D. Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J Antibiot. 2020;73(1):5–27. https://doi.org/10.1038/s41429-019-0240-6.

Article 
CAS 

Google Scholar
 

Kaur G, Agarwal R, Sharma RK. Bacteriophage therapy for critical and high-priority antibiotic-resistant bacteria and phage cocktail-antibiotic formulation perspective. Food Environ Virol. 2021;13(4):433–46. https://doi.org/10.1007/s12560-021-09483-z.

Article 
CAS 
PubMed 

Google Scholar
 

Grabowski Ł, Gaffke L, Pierzynowska K, Cyske Z, Choszcz M, Węgrzyn G, Węgrzyn A. Enrofloxacin—the ruthless killer of eukaryotic cells or the last hope in the fight against bacterial infections? Int J Mol Sci. 2022;23(7): 3648. https://doi.org/10.3390/ijms23073648.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shariati A, Noei M, Chegini Z. Bacteriophages: the promising therapeutic approach for enhancing ciprofloxacin efficacy against bacterial infection. J Clin Lab Anal. 2023;37(9–10): e24932. https://doi.org/10.1002/jcla.24932.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Huff W, Huff G, Rath N, Balog J, Donoghue A. Therapeutic efficacy of bacteriophage and baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poult Sci. 2004;83(12):1944–7. https://doi.org/10.1093/ps/83.12.1944.

Article 
CAS 
PubMed 

Google Scholar
 

Pirnay J-P, Djebara S, Steurs G, Griselain J, Cochez C, De Soir S, Glonti T, Spiessens A, Vanden Berghe E, Green S. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat Microbiol. 2024. https://doi.org/10.1038/s41564-024-01705-x.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ferris RA, McCue PM, Borlee GI, Loncar KD, Hennet ML, Borlee BR. In vitro efficacy of nonantibiotic treatments on biofilm disruption of gram-negative pathogens and an in vivo model of infectious endometritis utilizing isolates from the equine uterus. J Clin Microbiol. 2016;54(3):631–9. https://doi.org/10.1128/JCM.02861-15.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Loncar KD, Ferris RA, McCue PM, Borlee GI, Hennet ML, Borlee BR. In vitro biofilm disruption and bacterial killing using nonantibiotic compounds against gram-negative equine uterine pathogens. J Equine Vet Sci. 2017;53:94–9. https://doi.org/10.1016/j.jevs.2017.02.003.

Article 

Google Scholar
 

Silva Filho AB, Sobral GG, Freire LQ, Silva ER, Vazquez JJ, Serres C, Lorenzo PL, Gutiérrez-Cepeda L, Carneiro GF. Anti-biofilm action of ozonized sunflower oil against bacteria isolated from the uterus of mares susceptible to endometritis. J Equine Vet Sci. 2023;125:104746. https://doi.org/10.1016/j.jevs.2023.104746.

Article 

Google Scholar
 

Ferris RA, McCue PM, Borlee GI, Glapa KE, Martin KH, Mangalea MR, Hennet ML, Wolfe LM, Broeckling CD, Borlee BR. Model of chronic equine endometritis involving a Pseudomonas aeruginosa biofilm. Infect Immun. 2017;85. https://doi.org/10.1128/iai.00332-17.

Jurczak-Kurek A, Gąsior T, Nejman-Faleńczyk B, Bloch S, Dydecka A, Topka G, Necel A, Jakubowska-Deredas M, Narajczyk M, Richert M. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Sci Rep. 2016;6(1):34338. https://doi.org/10.1038/srep34338.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ferriol-González C, Domingo-Calap P. Phages for biofilm removal. Antibiotics. 2020;9(5): 268. https://doi.org/10.3390/antibiotics9050268.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pires DP, Melo LD, Boas DV, Sillankorva S, Azeredo J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol. 2017;39:48–56. https://doi.org/10.1016/j.mib.2017.09.004.

Article 
CAS 
PubMed 

Google Scholar