FAO. The State of Food Security and Nutrition in the World 2022. FAO; IFAD; UNICEF ; WFP; WHO, editor. The State of Food Security and Nutrition in the World 2022. Rome, Italy: FAO; 2022.

Kumar M, Ahmad S, Singh RP. Plant growth promoting microbes: Diverse roles for sustainable and ecofriendly agriculture. Energy Nexus. 2022;7:100133.


Google Scholar
 

Matías J, Rodríguez MJ, Carrillo-Vico A, Casals J, Fondevilla S, Haros CM, et al. From ‘Farm to Fork’: exploring the potential of nutrient-rich and stress-resilient emergent crops for sustainable and healthy food in the Mediterranean region in the face of climate change challenges. Plants. 2024.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vernooy R. Does crop diversification lead to climate-related resilience? Improving the theory through insights on practice. Agroecol Sustain Food Syst. 2022;46:877–901.


Google Scholar
 

Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;871:402666.


Google Scholar
 

García-Fraile P, Menéndez E, Rivas R. Role of bacterial biofertilizers in agriculture and forestry. Aims Bioeng. 2015;2(3):183–205.


Google Scholar
 

Dastogeer KMG, Tumpa FH, Sultana A, Akter MA, Chakraborty A. Plant microbiome–an account of the factors that shape community composition and diversity. Curr Plant Biol. 2020;23:100161.


Google Scholar
 

Bandopadhyay S, Li X, Bowsher AW, Last RL, Shade A. Disentangling plant- and environment-mediated drivers of active rhizosphere bacterial community dynamics during short-term drought. Nat Commun. 2024;15:1–16.


Google Scholar
 

Di Benedetto NA, Corbo MR, Campaniello D, Cataldi MP, Bevilacqua A, Sinigaglia M, et al. The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiol. 2017;3:413.

PubMed 
PubMed Central 

Google Scholar
 

Khan N, Mehmood A. Revisiting climate change impacts on plant growth and its mitigation with plant growth promoting rhizobacteria. South Afr J Bot. 2023;160:586–601.

CAS 

Google Scholar
 

Shah A, Nazari M, Antar M, Msimbira LA, Naamala J, Lyu D, et al. PGPR in agriculture: a sustainable approach to increasing climate change resilience. Front Sustain Food Syst. 2021;5:667546.


Google Scholar
 

Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci Total Environ. 2020;743:140682.

PubMed 

Google Scholar
 

Pérez-Montaño F, Alías-Villegas C, Bellogín RA, Del Cerro P, Espuny MR, Jiménez-Guerrero I, et al. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res. 2014;169(5–6):325–36.

PubMed 

Google Scholar
 

Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, et al. Enhancing climate change resilience in agricultural crops. Curr Biol. 2023;33:R1246–61.

CAS 
PubMed 

Google Scholar
 

de Oliveira Lopes ÁL, Setubal IS, da Costa Neto VP, Zilli JE, Rodrigues AC, Bonifacio A. Synergism of Bradyrhizobium and Azospirillum baldaniorum improves growth and symbiotic performance in lima bean under salinity by positive modulations in leaf nitrogen compounds. Appl Soil Ecol. 2022;180:104603.


Google Scholar
 

Zimmermann SD, Roussillon L, Mandon K, Oresnik IJ, Hawkins JP. The rhizobium-legume symbiosis: co-opting successful stress management. Front Plant Sci. 2022;12:796045.


Google Scholar
 

Latt ZK, Thant S, Aung NN, Aye OM, Oo NN, Htun TMM, et al. Phosphate solubilization of Bacillus megaterium isolated from non-saline soils under salt stressed conditions. Journal of Bacteriology & Mycology: Open Access. 2018;6:335–41.


Google Scholar
 

Chen W, Yang F, Zhang L, Wang J. Organic acid secretion and phosphate solubilizing efficiency of Pseudomonas sp. PSB12: effects of phosphorus forms and carbon sources. Geomicrobiol J. 2016;33:870–7.

CAS 

Google Scholar
 

Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27(5):637–57.

CAS 
PubMed 

Google Scholar
 

Trapet P, Avoscan L, Klinguer A, Pateyron S, Citerne S, Chervin C, et al. The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol. 2016;171:675–93.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chandra D, Srivastava R, Sharma AK. Influence of IAA and ACC deaminase producing fluorescent pseudomonads in alleviating drought stress in wheat (Triticum aestivum). Agric Res. 2018;7:290–9.

CAS 

Google Scholar
 

Kang SM, Shahzad R, Bilal S, Khan AL, Park YG, Lee KE, et al. Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol. 2019.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Egamberdieva D. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant. 2009;31:861–4.

CAS 

Google Scholar
 

Matsuda R, Handayani ML, Sasaki H, Takechi K, Takano H, Takio S. Production of indoleacetic acid by strains of the epiphytic bacteria Neptunomonas spp. isolated from the red alga Pyropia yezoensis and the seagrass Zostera marina. Arch Microbiol. 2018;200:255–65.

CAS 
PubMed 

Google Scholar
 

Kang S-M, Latif Khan A, Waqas M, Asaf S, Lee K-E, Park Y-G, et al. Bacillus tequilensis SSB07 induced thermotolerance in soybean. J Plant Interact. 2019;14:416–23.

CAS 

Google Scholar
 

Kang S-M, Latif Khan A, Hamayun M, Hussain J, Joo G-J, You Y-H, et al. Gibberellin-Producing Promicromonospora sp. SE188 Improves Solanum lycopersicum Plant Growth and Influences Endogenous Plant Hormones. J Microbiology. 2012;50:902–9.

Patel T, Saraf M. Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J Plant Interact. 2017;12:480–7.

CAS 

Google Scholar
 

Park Y-G, Mun B-G, Kang S-M, Hussain A, Shahzad R, Seo C-W, et al. Bacillusaryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One. 2017;12(3):e0173203.

PubMed 
PubMed Central 

Google Scholar
 

Kavi Kishor PB, Tiozon RN, Fernie AR, Sreenivasulu N. Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends Plant Sci. 2022;27:1283–95.

CAS 
PubMed 

Google Scholar
 

Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep. 2016;6:34768.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tiwari S, Lata C, Chauhan PS, Nautiyal CS. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem. 2016;99:108–17.

CAS 
PubMed 

Google Scholar
 

Arkhipova T, Martynenko E, Sharipova G, Kuzmina L, Ivanov I, Garipova M, et al. Effects of plant growth promoting rhizobacteria on the content of abscisic acid and salt resistance of wheat plants. Plants. 2020;9:1429.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, et al. 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol. 2015;25:1119–28.

CAS 
PubMed 

Google Scholar
 

Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A. Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv. KDML105 OPEN. Sci Rep. 2018;8:1950

Bal HB, Adhya TK. Alleviation of submergence stress in rice seedlings by plant growth-promoting rhizobacteria with ACC deaminase activity. Front Sustain Food Syst. 2021;5:606158.


Google Scholar
 

Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol. 2020;5:1002–10.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric Informa Healthcare. 2016;2:1127500.


Google Scholar
 

Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R. Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Appl Soil Ecol. 2010;45:71–7.

Sharifi R, Ryu CM. Sniffing bacterial volatile compounds for healthier plants. Curr Opin Plant Biol. 2018;44:88–97.

CAS 
PubMed 

Google Scholar
 

Kwak YS, Bonsall RF, Okubara PA, Paulitz TC, Thomashow LS, Weller DM. Factors impacting the activity of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens against take-all of wheat. Soil Biol Biochem. 2012;54:48–56.

CAS 

Google Scholar
 

Harmsen N, Vesga P, Glauser G, Klötzli F, Heiman CM, Altenried A, et al. Natural plant disease suppressiveness in soils extends to insect pest control. Microbiome. 2024;12:1–16.


Google Scholar
 

Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Défago G. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology. 1998;88:678–84.

CAS 
PubMed 

Google Scholar
 

De Vleesschauwer D, Cornelis P, Höfte M. Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant-Microbe Interact. 2006;19:1406–19.

PubMed 

Google Scholar
 

Naseem H, Bano A. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact. 2014;9:689–701.


Google Scholar
 

Batool T, Ali S, Seleiman MF, Naveed NH, Ali A, Ahmed K, et al. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci Rep. 2020.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang H, Kim M-S, Sun Y, Dowd SE, Shi H, Paré PW. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact. 2008;21:737–44.

PubMed 

Google Scholar
 

Jiménez-Gómez A, García-Estévez I, García-Fraile P, Escribano-Bailón MT, Rivas R. Increase in phenolic compounds of Coriandrum sativum L. after the application of a Bacillus halotolerans biofertilizer. J Sci Food Agric. 2020;100:2742–9.

PubMed 

Google Scholar
 

Raklami A, Oufdou K, Tahiri AI, Mateos-Naranjo E, Navarro-Torre S, Rodríguez-Llorente ID, et al. Safe cultivation of Medicago sativa in metal-polluted soils from semi-arid regions assisted by heat-and metallo-resistant PGPR. Microorganisms. 2019.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo). 2012;2012:1–15.


Google Scholar
 

Cosentino SL, Testa G, Scordia D, Copani V. Sowing time and prediction of flowering of different hemp (Cannabis sativa L.) genotypes in southern Europe. Ind Crops Prod. 2012;37:20–33.


Google Scholar
 

Morte A, Kagan-Zur V, Navarro-Ródenas A, Sitrit Y. Cultivation of desert truffles—A crop suitable for arid and semi-arid zones. Agronomy. 2021;11(8):1462.

CAS 

Google Scholar
 

Lucas MM, Stoddard FL, Annicchiarico P, Frías J, Martínez-Villaluenga C, Sussmann D, et al. The future of lupin as a protein crop in Europe. Front Plant Sci. 2015;6:160197.


Google Scholar
 

Quiñones MA, Lucas MM, Pueyo JJ. Adaptive mechanisms make lupin a choice crop for acidic soils affected by aluminum toxicity. Front Plant Sci. 2022.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Quiñones MA, Fajardo S, Fernández-Pascual M, Lucas MM, Pueyo JJ. Nodulated white lupin plants growing in contaminated soils accumulate unusually high mercury concentrations in their nodules, roots and especially cluster roots. Horticulturae. 2021;7:302.


Google Scholar
 

Msaddak A, Mars M, Quiñones MA, Lucas MM, Pueyo JJ. Lupin, a unique legume that is nodulated by multiple microsymbionts: the role of horizontal gene transfer. Int J Mol Sci. 2023;24:6496.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Aslam MM, Pueyo JJ, Pang J, Yang J, Chen W, Chen H, et al. Root acid phosphatases and rhizobacteria synergistically enhance white lupin and rice phosphorus acquisition. Plant Physiol. 2022;190:2449–65.

PubMed 
PubMed Central 

Google Scholar
 

Ferchichi N, Toukabri W, Vrhovsek U, Angeli A, Masuero D, Mhamdi R, et al. Inoculation of Lupinus albus with the nodule-endophyte Paenibacillus glycanilyticus LJ121 improves grain nutritional quality. Arch Microbiol. 2020;202:283–91.

CAS 
PubMed 

Google Scholar
 

Ferchichi N, Toukabri W, Boularess M, Smaoui A, Mhamdi R, Trabelsi D. Isolation, identification and plant growth promotion ability of endophytic bacteria associated with lupine root nodule grown in Tunisian soil. Arch Microbiol. 2019;201:1333–49.

CAS 
PubMed 

Google Scholar
 

Sulewska H, Ratajczak K, Niewiadomska A, Panasiewicz K. The use of microorganisms as bio-fertilizers in the cultivation of white lupine. Open Chem. 2019;17:813–22.

CAS 

Google Scholar
 

Waraczewska Z, Niewiadomska A, Wolna-Maruwka A, Sulewska H, Budka A, Pilarska AA. The effect of in vitro coinoculation on the physiological parameters of white lupine plants (Lupinus albus L.). Appl Sci. 2022.

Article 

Google Scholar
 

González D, Blanco C, Probanza A, Jiménez PA, Robas M. Evaluation of the pgpr capacity of four bacterial strains and their mixtures, tested on Lupinus albus var. Dorado seedlings, for the bioremediation of mercury-polluted soils. Processes. 2021;9:1293.


Google Scholar
 

González-Reguero D, Robas-Mora M, Probanza A, Jiménez PA. Evaluation of the oxidative stress alleviation in Lupinus albus var. Orden Dorado by the inoculation of four plant growth-promoting bacteria and their mixtures in mercury-polluted soils. Front Microbiol. 2022;13:907557.

PubMed 
PubMed Central 

Google Scholar
 

Gutiérrez Mañero FJ, Probanza A, Ramos B, Colón Flores JJ, Lucas García JA. Effects of culture filtrates of rhizobacteria isolated from wild lupine on germination, growth, and biological nitrogen fixation of lupine seedlings. J Plant Nutr. 2003;26:1101–15.


Google Scholar
 

Hamada MA, Soliman ERS. Characterization and genomics identification of key genes involved in denitrification-DNRA-nitrification pathway of plant growth-promoting rhizobacteria (Serratia marcescens OK482790). BMC Microbiol. 2023;23:210.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hewedy M, Abdel-Wahab AF, El Mokadem MT, El-Sayed SY. Evaluation of some plant growth promoting rhizobacteria in bioprotecting lupine from infection by Fusarium solani. Egypt J Pest Control. 2011;21:227–32.


Google Scholar
 

Lucas García JA, Probanza A, Ramos B, Colón Flores JJ, Gutiérrez Mañero FJ. Effects of plant growth promoting rhizobacteria (PGPRs) on the biological nitrogen fixation, nodulation, and growth of Lupinus albus 1. cv. Multolupa. Eng Life Sci. 2004;4:71–7.

Mghazli N, Bruneel O, Zouagui R, Hakkou R, Sbabou L. Characterization of plant growth promoting activities of indigenous bacteria of phosphate mine wastes, a first step toward revegetation. Front Microbiol. 2022;13:1026991.

PubMed 
PubMed Central 

Google Scholar
 

Robas Mora M, Fernández Pastrana VM, Oliva LLG, Lobo AP, Jiménez Gómez PA. Plant growth promotion of the forage plant Lupinus albus Var. Orden Dorado using Pseudomonas agronomica sp. nov. and Bacillus pretiosus sp. nov. added over a valorized agricultural biowaste. Front Microbiol. 2023;13:65–76.

Sarmiento LH, Díaz PM, Dávalos JJ. Caracterización y evaluación del potencial PGPR de la microflora asociada al cultivo de tarwi (Lupinus mutabilis Sweet). Ecol Apl. 2020;19:65–76.


Google Scholar
 

Unno Y, Okubo K, Wasaki J, Shinano T, Osaki M. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of lupin analysed by phytate utilization ability. Environ Microbiol. 2005;7:396–404.

PubMed 

Google Scholar
 

Weisskopf L, Heller S, Eberl L. Burkholderia species are major inhabitants of white lupin cluster roots. Appl Environ Microbiol. 2011;77:7715–20.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot. 2006;98:693–713.

PubMed 
PubMed Central 

Google Scholar
 

Pueyo JJ, Quiñones MA, de la Coba Peña T, Fedorova EE, Lucas MM. Nitrogen and phosphorus interplay in lupin root nodules and cluster roots. Front Plant Sci. 2021;12:644218.

PubMed 
PubMed Central 

Google Scholar
 

Richardson AE. Regulating the phosphorus nutrition of plants: molecular biology meeting agronomic needs. Plant Soil. 2009;322:17–24.

CAS 

Google Scholar
 

Lamont BB, Pérez-Fernández M, Rodríguez-Sánchez J. Soil bacteria hold the key to root cluster formation. New Phytol. 2014;206:1156–62.

PubMed 

Google Scholar
 

Yang J, Kloepper JW, Ryu CM. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009;14:1–4.

CAS 
PubMed 

Google Scholar
 

Vocciante M, Franchi E, Fusini D, Pedron F, Barbafieri M, Petruzzelli G, et al. Sustainable recovery of an agricultural area impacted by an oil spill using enhanced phytoremediation. Appl Sci. 2024;14:582.

CAS 

Google Scholar
 

Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev. 2013;37:634–63.

CAS 
PubMed 

Google Scholar
 

Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28:1327–50.

CAS 
PubMed 

Google Scholar
 

Msaddak A, Quiñones MA, Mars M, Pueyo JJ. The beneficial effects of inoculation with selected nodule-associated PGPR on white lupin are comparable to those of inoculation with symbiotic rhizobia. Plants. 2023.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kasule F, Diack O, Mbaye M, Kakeeto R, Econopouly BF. Genomic resources, opportunities, and prospects for accelerated improvement of millets. Theoretical and Applied Genetics. 2024;137(12):273.

PubMed 

Google Scholar
 

Kumari D, Thakur N, Upmanyu S, Thakur N, Upmanyu S. The world of millets: a comprehensive overview of millets and their significance citation: the world of millets: a comprehensive overview of Millets and their Significance. J Cereal Res. 2024;16:239–45.


Google Scholar
 

Kheya SA, Talukder SK, Datta P, Yeasmin S, Rashid MH, Hasan AK, et al. Millets: the future crops for the tropics—status, challenges and future prospects. Heliyon. 2023;9(11):e22123.

PubMed 
PubMed Central 

Google Scholar
 

Yadav OP, Singh DV, Kumari V, Prasad M, Seni S, Singh RK, et al. Production and cultivation dynamics of millets in India. Crop Sci. 2024;64(5):2459–84.


Google Scholar
 

Shivashakarappa K, Gunnaiah R, Ajjappala BS, Kadi A, Vuppula A. Effect of plant growth promoting rhizobacteria on the growth and yield of foxtail millet (Setaria italica L. Beauv). Int J Plant Soil Sci. 2022;34(22):1737–44.


Google Scholar
 

Niu X, Song L, Xiao Y, Ge W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid and their potential in alleviating drought stress. Front Microbiol. 2018;8: 2580.

PubMed 
PubMed Central 

Google Scholar
 

Swamy CT. Plant growth-promoting rhizobacteria and millets: a sustainable solution for food security. J Drug Res Ayurvedic Sci. 2023;8(Suppl 1):S115–20.


Google Scholar
 

Murali M, Singh SB, Gowtham HG, Shilpa N, Prasad M, Aiyaz M, et al. Induction of drought tolerance in Pennisetum glaucum by ACC deaminase producing PGPR- Bacillus amyloliquefaciens through antioxidant defense system. Microbiol Res. 2021;253:126891.

CAS 
PubMed 

Google Scholar
 

Tian L, Wang Y, Yang J, Zhang L, Feng B. Rhizosphere bacterial community structure of three minor grain crops: a case-study from paired field sites in northern China. Land Degrad Dev. 2022;33:104–16.


Google Scholar
 

Saritha M, Naorem A, Kumar S, Meena KK, Panwar NR. Exploring the role of microorganisms in enhancing pearl millet growth and productivity. Ann Arid Zone. 2023;62(1):19–27.


Google Scholar
 

Suharno AQ, Sancayaningsih RP, Kasiamdari RS, Soetarto ES. The growth response of pokem (Setaria italica L.) inoculated with arbuscular mycorrhizal fungi (AMF) from tailings area. J Degraded Min Lands Manage. 2021;8(4):2873.


Google Scholar
 

Muthukumar T, Koshila Ravi R. Biodiversity of arbuscular mycorrhizal fungi and its impact on millets growth. Singapore: Springer Nature Singapore; 2023. p. 35–82.


Google Scholar
 

Chang OC, Lin WY. Variation of growth and transcriptome responses to arbuscular mycorrhizal symbiosis in different foxtail millet lines. Bot Stud. 2023;64(1):16.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fabbrin EG, Gogorcena Y, Mogor AF, Garmendia I, Goicoechea N. Pearl millet growth and biochemical alterations determined by mycorrhizal inoculation, water availability and atmospheric CO2 concentration. Crop Pasture Sci. 2015.

Article 

Google Scholar
 

Kamali S, Mehraban A. Effects of nitroxin and arbuscular mycorrhizal fungi on the agro-physiological traits and grain yield of sorghum (Sorghum bicolor L.) under drought stress conditions. PLoS One. 2021;15(12):e0243824.


Google Scholar
 

Ndeko AB, Founoune-Mboup H, Kane A, Cournac L. Arbuscular mycorrhizal fungi alleviate the negative effect of temperature stress in millet lines with contrasting soil aggregation potential. Gesunde Pflanz. 2022;74(1):53–67.

CAS 

Google Scholar
 

McPartland JM, Guy GW, Hegman W. Cannabis is indigenous to Europe and cultivation began during the Copper or Bronze age: a probabilistic synthesis of fossil pollen studies. Veg Hist Archaeobot. Springer: New York LLC; 2018. p. 635–48.


Google Scholar
 

Small E. Cannabis: a complete guide. 1st ed. Cannabis: A Complete Guide. CRC Press; 2017.


Google Scholar
 

Fike J. Industrial hemp: renewed opportunities for an ancient crop. Crit Rev Plant Sci. 2016.

Article 

Google Scholar
 

Winston ME, Hampton-Marcell J, Zarraonaindia I, Owens SM, Moreau CS, Gilbert JA, et al. Understanding cultivar-specificity and soil determinants of the Cannabis microbiome. PLoS One. 2014;9(6): e99641.

PubMed 
PubMed Central 

Google Scholar
 

Comeau D, Balthazar C, Novinscak A, Bouhamdani N, Joly DL, Filion M. Interactions between Bacillus Spp., Pseudomonas Spp. and Cannabis sativa promote plant growth. Front Microbiol. 2021;12:715758.

Comeau D, Novinscak A, Joly DL, Filion M. Spatio-temporal and cultivar-dependent variations in the cannabis microbiome. Front Microbiol. 2020;11: 491.

PubMed 
PubMed Central 

Google Scholar
 

Conant RT, Walsh RP, Walsh M, Bell CW, Wallenstein MD. Effects of a microbial biostimulant, mammoth PTM, on Cannabis sativa Bud Yield. J Hortic. 2017;4(191):2376–354.


Google Scholar
 

Balthazar C, Novinscak A, Cantin G, Joly DL, Filion M. Biocontrol activity of Bacillus spp. and Pseudomonas spp. against Botrytis cinerea and other Cannabis fungal pathogens. Phytopathology. 2022;112:549–60.

CAS 
PubMed 

Google Scholar
 

Pagnani G, Pellegrini M, Galieni A, D’Egidio S, Matteucci F, Ricci A, et al. Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’ cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Ind Crops Prod. 2018;123:75–83.

CAS 

Google Scholar
 

Afzal I, Shinwari ZK, Iqrar I. Selective isolation and characterization of agriculturally beneficial endophytic bacteria from wild hemp using canola. Pak J Bot. 2015;47(5):1999–2008.

CAS 

Google Scholar
 

Scott C, Punja ZK. Biological control of Fusarium oxysporum causing damping-off and Pythium myriotylum causing root and crown rot on cannabis (Cannabis sativa L.) plants. Can J Plant Pathol. 2023;45:238–52.

CAS 

Google Scholar
 

Aunkam P, Sibponkrung S, Limkul S, Seabkongseng T, Mahanil K, Umnajkitikorn K, et al. Mechanisms of cannabis growth promotion by Bacillus velezensis S141. Plants. 2024;13(21):2971.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cavallero A, Chelucci E, Chiellini C, Gabriele M. Exploring microalgae and endophyte as biostimulants: antioxidant and anti-inflammatory properties of Cannabis sativa L. sprouts under standard and enrichment conditions. Food Biosci. 2024;62:105138.

CAS 

Google Scholar
 

Corredor-Perilla IC, Cuervo Andrade JL, Olejar KJ, Park SH. Beneficial properties of soil bacteria from Cannabis sativa L.: seed germination, phosphorus solubilization and mycelial growth inhibition of Fusarium sp. Rhizosphere. 2023;27,100780.

Lyu D, Backer R, Smith DL. Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Ind Crops Prod. 2022;178:114583.

CAS 

Google Scholar
 

Lyu D, Backer R, Berrué F, Martinez-Farina C, Hui JPM, Smith DL. Plant growth-promoting rhizobacteria (PGPR) with microbial growth broth improve biomass and secondary metabolite accumulation of Cannabis sativa L. J Agric Food Chem. 2023;71:7268–77.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tanney CAS, Lyu D, Schwinghamer T, Geitmann A, Ruan ED, Smith DL. Sub-optimal nutrient regime coupled with Bacillus and Pseudomonas sp. inoculation influences trichome density and cannabinoid profiles in drug-type Cannabis sativa. Front Plant Sci. 2023;14,1131346.

Backer R, Schwinghamer T, Rosenbaum P, McCarty V, Eichhorn Bilodeau S, Lyu D, et al. Closing the yield gap for cannabis: a meta-analysis of factors determining cannabis yield. Front Plant Sci. 2019;10:495.

PubMed 
PubMed Central 

Google Scholar
 

Lyu D, Backer R, Robinson WG, Smith DL. Plant growth-promoting rhizobacteria for cannabis production: yield, cannabinoid profile and disease resistance. Front Microbiol. 2019;10:461387.


Google Scholar
 

Gonçalves J, Rosado T, Soares S, Simão AY, Caramelo D, Luís Â, et al. Cannabis and its secondary metabolites: their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines (Basel). 2019;6:31.

PubMed 

Google Scholar
 

Punja ZK. Emerging diseases of Cannabis sativa and sustainable management. Pest Manag Sci. 2021;77(9):3857–70.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kusari P, Kusari S, Spiteller M, Kayser O. Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers. 2013;60:137–51.


Google Scholar
 

Scott M, Rani M, Samsatly J, Charron J-B, Jabaji S. Endophytes of industrial hemp (Cannabis sativa L.) cultivars: identification of culturable bacteria and fungi in leaves, petioles, and seeds. Can J Microbiol. 2018;64:664–80.

CAS 
PubMed 

Google Scholar
 

Ruiz KB, Biondi S, Oses R, Acuña-Rodríguez IS, Antognoni F, Martinez-Mosqueira EA, et al. Quinoa biodiversity and sustainability for food security under climate change. A review. Agron Sustain Dev. 2014;34:349–59.


Google Scholar
 

Bazile D, Pulvento C, Verniau A, Al-Nusairi MS, Ba D, Breidy J, et al. Worldwide evaluations of quinoa: preliminary results from post international year of quinoa FAO projects in nine countries. Front Plant Sci. 2016;7:850.

PubMed 
PubMed Central 

Google Scholar
 

Olmos E, Jiménez-Pérez B, Román-García I, Fernández-García N. Salt-tolerance mechanisms in quinoa: is glycinebetaine the missing piece of the puzzle? Plant Physiol Biochem. 2024;206:108276.

CAS 
PubMed 

Google Scholar
 

Maestro-Gaitán I, Granado-Rodríguez S, Poza-Viejo L, Matías J, Márquez-López JC, Pedroche JJ, et al. Quinoa plant architecture: a key factor determining plant productivity and seed quality under long-term drought. Environ Exp Bot. 2023;211:105350.


Google Scholar
 

Yang A, Akhtar SS, Iqbal S, Amjad M, Naveed M, Zahir ZA, et al. Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct Plant Biol. 2016;43:632–42.

CAS 
PubMed 

Google Scholar
 

Gonzales V, Huallpan M, Ramirez X, Miguel YS, Dubey M, Jensen DF, et al. Rhizosphere bacteria from the Bolivian highlands improve drought tolerance in quinoa (Chenopodium quinoa Willd.). J Appl Microbiol. 2024;135:lxae296.

CAS 
PubMed 

Google Scholar
 

Castiglione S, Oliva G, Vigliotta G, Novello G, Gamalero E, Lingua G, et al. Effects of compost amendment on glycophyte and halophyte crops grown on saline soils: Isolation and characterization of rhizobacteria with plant growth promoting features and high salt resistance. Appl Sci (Switzerland). 2021;11:1–15.


Google Scholar
 

Mahdi I, Fahsi N, Hafidi M, Allaoui A, Biskri L. Plant growth enhancement using rhizospheric halotolerant phosphate solubilizing bacterium Bacillus licheniformis qa1 and Enterobacter asburiae qf11 isolated from Chenopodium quinoa willd. Microorganisms. 2020;8:1–21.

CAS 

Google Scholar
 

Mahdi I, Allaoui A, Fahsi N, Biskri L. Bacillus velezensis QA2 potentially induced salt stress tolerance and enhanced phosphate uptake in quinoa plants. Microorganisms. 2022;10:1836.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li J, Guo X, Cai D, Xu Y, Wang Y. Bacillus amyloliquefaciens 11B91 inoculation enhances the growth of quinoa (Chenopodium quinoa Willd.) under salt stress. PeerJ. 2023;11:e15925.

PubMed 
PubMed Central 

Google Scholar
 

Mahdi I, Fahsi N, Hafidi M, Benjelloun S, Allaoui A, Biskri L. Rhizospheric phosphate solubilizing Bacillus atrophaeus GQJK17 S8 increases quinoa seedling, withstands heavy metals, and mitigates salt stress. Sustainability. 2021;13(6):3307.

Slatni T, Ben Slimene I, Harzalli Z, Taamalli W, Smaoui A, Abdelly C, et al. Enhancing quinoa (Chenopodium quinoa) growth in saline environments through salt-tolerant rhizobacteria from halophyte biotope. Physiol Plant. 2024;176:e14466.

CAS 
PubMed 

Google Scholar
 

Rafique E, Mumtaz MZ, Ullah I, Rehman A, Qureshi KA, Kamran M, et al. Potential of mineral-solubilizing bacteria for physiology and growth promotion of Chenopodium quinoa Willd. Front Plant Sci. 2022;13:1004833.

PubMed 
PubMed Central 

Google Scholar
 

Alvarado R, Fuentes A, Ortiz J, Herrera H, Arriagada C. Metal(loid)-resistant bacterial consortia with antimycotic properties increase tolerance of Chenopodium quinoa Willd. to metal(loid) stress. Rhizosphere. 2022;23:100569.


Google Scholar
 

Alvarado R, Arriagada-Escamilla C, Ortiz J, Campos-Vargas R, Cornejo P. Alginate-bentonite encapsulation of extremophillic bacterial consortia enhances Chenopodium quinoa tolerance to metal stress. Microorganisms. 2024;12:2066.

PubMed 
PubMed Central 

Google Scholar
 

Cai D, Xu Y, Zhao F, Zhang Y, Duan H, Guo X. Improved salt tolerance of Chenopodium quinoa Willd. contributed by Pseudomonas sp. strain M30–35. PeerJ. 2021;9:e10702.

PubMed 
PubMed Central 

Google Scholar
 

Mahdi I, Hafidi M, Allaoui A, Biskri L. Halotolerant endophytic bacterium Serratia rubidaea ed1 enhances phosphate solubilization and promotes seed germination. Agriculture. 2021;11:224.

CAS 

Google Scholar
 

Aslam MU, Raza MAS, Saleem MF, Waqas M, Iqbal R, Ahmad S, et al. Improving strategic growth stage-based drought tolerance in Quinoa by rhizobacterial inoculation. Commun Soil Sci Plant Anal. 2020;51:853–68.

CAS 

Google Scholar
 

Valbuena-Rodríguez JL, Fonseca-Guerra I, Buitrago-Yomayusa C, Puentes-S A, Rozo MEB. Isolation and characterization of Pantoea ananatis and P. agglomerans in quinoa: P. ananatis as a potential fungal biocontroller and plant growth promoter. Int Microbiol. 2024;1–13.

Yang A, Akhtar SS, Fu Q, Naveed M, Iqbal S, Roitsch T, et al. Burkholderia phytofirmans PsJN stimulate growth and yield of Quinoa under salinity stress. Plants. 2020;9:672.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Khan A, Singh AV. Multifarious effect of ACC deaminase and EPS producing Pseudomonas sp. and Serratia marcescens to augment drought stress tolerance and nutrient status of wheat. World J Microbiol Biotechnol. 2021;37:198.

CAS 
PubMed 

Google Scholar
 

Abadi VAJM, Sepehri M, Rahmani HA, Zarei M, Ronaghi A, Taghavi SM, et al. Role of dominant phyllosphere bacteria with plant growth–promoting characteristics on growth and nutrition of maize (Zea mays L.). J Soil Sci Plant Nutr. 2020;20:2348–63.

CAS 

Google Scholar
 

Jaramillo Roman V, den Toom LA, Castro Gamiz C, van der Pijl N, Visser RGF, van Loo EN, et al. Differential responses to salt stress in ion dynamics, growth and seed yield of European quinoa varieties. Environ Exp Bot. 2020;177:104146.

CAS 

Google Scholar
 

Matías J, Rodríguez MJ, Cruz V, Calvo P, Granado-Rodríguez S, Poza-Viejo L, et al. Assessment of the changes in seed yield and nutritional quality of quinoa grown under rainfed Mediterranean environments. Front Plant Sci. 2023;14: 1268014.

PubMed 
PubMed Central 

Google Scholar
 

Igiehon NO, Babalola OO, Aremu BR. Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiol. 2019;19:159.

PubMed 
PubMed Central 

Google Scholar
 

Maestro-Gaitan I, Redondo-Nieto M, Gonzalez-Bodi S, Maestro-Gaitán I, Redondo-Nieto M, González-Bodí S, et al. Insights into quinoa endophytes: core bacterial communities reveal high stability to water stress and genotypic variation. Environ Microbiome. 2025;20:16.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Maestro-Gaitán I, Granado-Rodríguez S, Redondo-Nieto M, Battaglia A, Poza-Viejo L, Matías J, et al. Unveiling changes in rhizosphere-associated bacteria linked to the genotype and water stress in quinoa. Microb Biotechnol. 2023;16:2326–44.

PubMed 
PubMed Central 

Google Scholar
 

Fanai A, Bohia B, Lalremruati F, Lalhriatpuii N, Lalmuanpuii R, Singh PK. Plant growth promoting bacteria (PGPB)-induced plant adaptations to stresses: An updated review. PeerJ. 2024;12:e17882.

PubMed 
PubMed Central 

Google Scholar
 

Singh A, Maurya A, Rajkumar S, Singh AK, Bhardwaj R, Kaushik SK, et al. Genome-wide comparative analysis of five amaranthaceae species reveals a large amount of repeat content. Plants. 2024;13: 824.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nandan A, Koirala P, Dutt Tripathi A, Vikranta U, Shah K, Gupta AJ, et al. Nutritional and functional perspectives of pseudocereals. Food Chem. 2024;448:139072.

CAS 
PubMed 

Google Scholar
 

Netshimbupfe MH, Berner J, Van Der Kooy F, Oladimeji O, Gouws C. The importance and use of Amaranthus for crop diversification in the SADC region. S Afr J Bot. 2023;152:192–202.


Google Scholar
 

Malik M, Sindhu R, Dhull SB, Bou-Mitri C, Singh Y, Panwar S, et al. Nutritional composition, functionality, and processing technologies for Amaranth. J Food Process Preserv. 2023;2023:1753029.


Google Scholar
 

Bvenura C, Kambizi L. Future grain crops. Future foods: global trends, opportunities, and sustainability challenges. 2022;81–105.

Yadav A, Yadav K. From humble beginnings to nutritional powerhouse: the rise of Amaranth as a climate-resilient superfood. Trop Plants. 2020;0:1–15.


Google Scholar
 

Devi R, Kaur T, Kour D, Yadav AN. Microbial consortium of mineral solubilizing and nitrogen fixing bacteria for plant growth promotion of amaranth (Amaranthus hypochondrius L.). Biocatal Agric Biotechnol. 2022;43:102404.

CAS 

Google Scholar
 

Pandey C, Dheeman S, Kumar Negi Y, Maheshwari K. Differential response of native Bacillus spp. isolates from agricultural and forest soils in growth promotion of Amaranthus hypochondriacus. Biotechnol Res. 2018;4:54–61.

CAS 

Google Scholar
 

Pandey C, Negi YK, Maheshwari DK, Rawat D, Prabha D. Potential of native cold tolerant plant growth promoting bacilli to enhance nutrient use efficiency and yield of Amaranthus hypochondriacus. Plant Soil. 2018;428:307–20.

CAS 

Google Scholar
 

Pandey C, Bajpai VK, Negi YK, Rather IA, Maheshwari DK. Effect of plant growth promoting Bacillus spp. on nutritional properties of Amaranthus hypochondriacus grains. Saudi J Biol Sci. 2018;25:1066–71.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Raj R, Johnson R, Joel JM, Nair SG, Cherian E, Job J, et al. Biopriming with a native microbial consortium favourably modulates the growth dynamics and yield of Amaranthus tricolor and Oryza sativa. J Plant Growth Regul. 2024;1–14.

Patel M, Vurukonda SSKP, Patel A. Multi-trait halotolerant plant growth-promoting bacteria mitigate induced salt stress and enhance growth of Amaranthus viridis. J Soil Sci Plant Nutr. 2023;23:1860–83.

CAS 

Google Scholar
 

Moreno-Espíndola IP, Ferrara-Guerrero MJ, De León-González F, Rivera-Becerril F, Mayorga-Reyes L, Pérez NO. Enzymatic activity and culturable bacteria diversity in rhizosphere of amaranth, as indicators of crop phenological changes. Bot Sci. 2018;96(4):640–9.


Google Scholar
 

Parra-Cota FI, Peña-Cabriales JJ, De Los Santos-Villalobos S, Martínez-Gallardo NA, Délano-Frier JP. Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PLoS One. 2014;9:e88094.

PubMed 
PubMed Central 

Google Scholar
 

Bhagyashree KB, Shivaprakash MK, Reddy MR. Isolation and identification of bacterial endophytes from grain Amaranth (Amaranthus caudatus) for plant growth promotion. Indian J Agric Res. 2023;57:426–30.


Google Scholar
 

Sandhya S, Radhakrishnan R, Sathasivam R, Arun M, Packiaraj G, Park SU. Influence of endophytic bacterium, Cellulosimicrobium sp. FRR2 on plant growth of Amaranthus campestris L. and bacterial survival at adverse environmental conditions. J Pure Appl Microbiol. 2021;15:2288–94.

CAS 

Google Scholar
 

Yashaswini MS, Nysanth NS, Anith KN. Endospore-forming bacterial endophytes from Amaranthus spp. improve plant growth and suppress leaf blight (Rhizoctonia solani Kühn) disease of Amaranthus tricolor L. Rhizosphere. 2021;19:100387.


Google Scholar
 

Radhakrishnan R, Ajithkumar P, Arun M, Sathasivam R, Sandhya S, Choi J, et al. An endophyte Paenibacillus dendritiformis strain APL3 promotes Amaranthus polygonoides L. sprout growth and their extract inhibits food-borne pathogens. Plant Sci Today. 2021;8:941–7.


Google Scholar
 

Barba de la Rosa AP, Huerta-Ocampo JA, González-Escobar JL, Aguilar-Hernández HS, Salcedo-Barrientos G, Espitia-Rangel E. Differential expression of iron transporters in Amaranthus cruentus roots when are subjected to salt stress: The influence of root endophytes. Rhizosphere. 2022;24:100620.

Niharika K, Sheeba S. Effect of chromium species and plant growth promoting microorganisms on growth parameters of Amaranthus gangeticus. Int J Environ Clim Chang. 2022;1484–90.

Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, et al. Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere. 2014;103:99–104.

CAS 
PubMed 

Google Scholar
 

Honrubia M, Andrino A, Morte A. Preparation and maintenance of both man-planted and wild plots. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A, editors. Desert Truffles. Springer-Verlag: Berlin Heidelberg; 2014. p. 367–87.


Google Scholar
 

Morte A, Honrubia M, Gutiérrez A. Biotechnology and cultivation of desert truffles. In: Varma A, editor. Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics (Third Edition). Springer-Verlag, Berlin: Heidelberg; 2008. p. 467–83.


Google Scholar
 

Morte A, Andrino A. Domestication: preparation of mycorrhizal seedlings. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A, editors. Desert truffles: phylogeny, physiology, distribution and domestication. Srpinger-Verlag Berlin Heidelberg; 2014. p. 343–65.


Google Scholar
 

Navarro-Ródenas A, Berná LM, Lozano-Carrillo C, Andrino A, Morte A. Beneficial native bacteria improve survival and mycorrhization of desert truffle mycorrhizal plants in nursery conditions. Mycorrhiza. 2016;26:769–79.

PubMed 

Google Scholar
 

Benucci GMN, Bonito GM. The truffle microbiome: species and geography effects on bacteria associated with fruiting bodies of hypogeous Pezizales. Microb Ecol. 2016;72:4–8.

PubMed 

Google Scholar
 

Alhuthali S, Bello SK, Bageel AM, Shori AB, Bataweel NM, Al-Hejin AM, et al. Soil physicochemical and metagenomic analyses of bacteria and fungi: toward desert truffle cultivation in Saudi Arabia. Agronomy. 2024;14:3021.

CAS 

Google Scholar
 

Satish L, Barak H, Keren G, Yehezkel G, Kushmaro A, Ben-Dov E, et al. The microbiome structure of the symbiosis between the desert truffle Terfezia boudieri and its host plant Helianthemum sessiliflorum. J Fungi. 2022;8:1062.

CAS 

Google Scholar
 

Adeleke R, Dames JF. Kalaharituber pfeilii and associated bacterial interactions. S Afr J Bot. 2014;90:68–73.


Google Scholar
 

Guarnizo Á L, Navarro-Ródenas A, Calvo-Polanco M, Marqués-Gálvez JE, Morte A. A mycorrhizal helper bacterium alleviates drought stress in mycorrhizal Helianthemum almeriense plants by regulating water relations and plant hormones. Environ Exp Bot. 2023;207:105228.


Google Scholar
 

Sangwan S, Prasanna R. Mycorrhizae helper bacteria: unlocking their potential as bioenhancers of plant–arbuscular mycorrhizal fungal associations. Microb Ecol. 2022;84:1–10.

PubMed 

Google Scholar
 

Frey-Klett P, Pierrat JC, Garbaye J. Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl Environ Microbiol. 1997;63:139–44.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Morte A, Navarro-Ródenas A, Nicolás E. Physiological parameters of desert truffle mycorrhizal Helianthemun almeriense plants cultivated in orchards under water deficit conditions. Symbiosis. 2010;52(2–3):133–9.


Google Scholar
 

Navarro-Ródenas A, Bárzana G, Nicolás E, Carra A, Schubert A, Morte A. Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought. Mol Plant Microbe Interact. 2013;26:1068–78.

PubMed 

Google Scholar
 

Sharipova G, Ivanov R, Veselov D, Akhiyarova G, Shishova M, Nuzhnaya T, et al. Involvement of Reactive Oxygen Species in ABA-Induced Increase in Hydraulic Conductivity and Aquaporin Abundance. Int J Mol Sci. 2021;22:9144.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Charpentier M, Sun J, Wen J, Mysore KS, Oldroyd GED. Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the protein phosphatase 2A complex. Plant Physiol. 2014;166:2077–90.

PubMed 
PubMed Central 

Google Scholar
 

Hill RA, Wong ‐ Bajracharya J, Anwar S, Coles D, Wang M, Lipzen A, et al. Abscisic acid supports colonization of Eucalyptus grandis roots by the mutualistic ectomycorrhizal fungus Pisolithus microcarpus. New Phytol. 2022;233:966–82.

Martín – Rodríguez JA, León – Morcillo R, Vierheilig H, Ocampo JA, Ludwig – Müller J, García – Garrido JM. Ethylene – dependent/ethylene – independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol. 2011;190:193–205.

PubMed 

Google Scholar
 

Zhang F, Wang P, Zou Y-N, Wu Q-S, Kuča K. Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Arch Agron Soil Sci. 2019;65:1316–30.

CAS 

Google Scholar
 

Benjamin G, Pandharikar G, Frendo P. Salicylic acid in plant symbioses: beyond plant pathogen interactions. Biology. 2022;11:861.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Herrera Medina M. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci. 2003;164:993–8.

CAS 

Google Scholar
 

Marqués-Gálvez JE, Morte A, Navarro-Ródenas A. Spring stomatal response to vapor pressure deficit as a marker for desert truffle fruiting. Mycorrhiza. 2020;30:503–12.

PubMed 

Google Scholar
 

Arenas F, López-García Á, Berná LM, Morte A, Navarro-Ródenas A. Desert truffle mycorrhizosphere harbors organic acid releasing plant growth–promoting rhizobacteria, essentially during the truffle fruiting season. Mycorrhiza. 2022;32:193–202.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Adnan M, Shah Z, Fahad S, Arif M, Alam M, Khan IA, et al. Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Sci Rep. 2017;7:16131.

PubMed 
PubMed Central 

Google Scholar
 

Etesami H, Adl SM. Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. Phyto-Microbiome in stress regulation. 2020;147–203.

Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.

CAS 
PubMed 

Google Scholar
 

Cordovez V, Dini-Andreote F, Carrión VJ, Raaijmakers JM. Ecology and evolution of plant microbiomes. Annu Rev Microbiol. 2019;73:69–88.

CAS 
PubMed 

Google Scholar
 

Zachow C, Müller H, Tilcher R, Berg G. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima-ancestor of all beet crops-and modern sugar beets. Front Microbiol. 2014;5:70954.

Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.

CAS 
PubMed 

Google Scholar
 

Tomasi N, Weisskopf L, Renella G, Landi L, Pinton R, Varanini Z, et al. Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biol Biochem. 2008;40:1971–4.

CAS 

Google Scholar