Eckart, C. An analysis of the stirring and mixing processes in incompressible fluids. J. Mar. Res. 7, 265–275 (1948).
Müller, P. From stirring to mixing in a stratified ocean. Oceanography 15, 12–19 (2002).
Olascoaga, M. J. et al. Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett. 40, 6171–6175 (2013).
Morrison, A. K., Griffies, S. M., Winton, M., Anderson, W. G. & Sarmiento, J. L. Mechanisms of Southern Ocean heat uptake and transport in a global eddying climate model. J. Clim. 29, 2059–2075 (2016).
Dufour, C. O. et al. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr. 45, 3057–3081 (2015).
Yamamoto, A. et al. Roles of the ocean mesoscale in the horizontal supply of mass, heat, carbon, and nutrients to the Northern Hemisphere subtropical gyres. J. Geophys. Res. Oceans 123, 7016–7036 (2018).
Bracco, A., Provenzale, A. & Scheuring, I. Mesoscale vortices and the paradox of the plankton. Proc. R. Soc. Lond. B 267, 1795–1800 (2000).
Lehahn, Y., d’Ovidio, F., Lévy, M. & Heifetz, E. Stirring of the northeast Atlantic spring bloom: a Lagrangian analysis based on multisatellite data. J. Geophys. Res. Oceans 112, 8005 (2007).
McKiver, W., Neufeld, Z. & Scheuring, I. Plankton bloom controlled by horizontal stirring. Nonlinear Process. Geophys. 16, 623–630 (2009).
Lehahn, Y. et al. Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters. Nat. Commun. 8, 14868 (2017).
Logerwell, E. A. & Smith, P. E. Mesoscale eddies and survival of late stage Pacific sardine (Sardinops sagax) larvae. Fish. Oceanogr. 10, 13–25 (2001).
Shulzitski, K., Sponaugle, S., Hauff, M., Walter, K. D. & Cowen, R. K. Encounter with mesoscale eddies enhances survival to settlement in larval coral reef fishes. Proc. Natl Acad. Sci. USA 113, 6928–6933 (2016).
Tew Kai, E. et al. Top marine predators track Lagrangian coherent structures. Proc. Natl Acad. Sci. USA 106, 8245–8250 (2009).
Cotte, C. et al. Scale-dependent interactions of Mediterranean whales with marine dynamics. Limnol. Oceanogr. 56, 219–232 (2011).
Cotté, C., d’Ovidio, F., Dragon, A.-C., Guinet, C. & Lévy, M. Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic circumpolar current. Prog. Oceanogr. 131, 46–58 (2015).
Meier, W. N. et al. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52, 185–217 (2014).
Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Change 143, 228–250 (2016).
Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).
Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).
Liu, W. & Fedorov, A. V. Global impacts of Arctic sea ice loss mediated by the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 46, 944–952 (2019).
Vihma, T. Effects of Arctic sea ice decline on weather and climate: a review. Surv. Geophys. 35, 1175–1214 (2014).
Muilwijk, M., Hattermann, T., Martin, T. & Granskog, M. A. Future sea ice weakening amplifies wind-driven trends in surface stress and Arctic Ocean spin-up. Nat. Commun. 15, 6889 (2024).
Bhatt, U. et al. Implications of Arctic sea ice decline for the Earth system. Annu. Rev. Environ. Resour. 39, 57–89 (2014).
Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524 (2013).
Armitage, T. W. K., Manucharyan, G. E., Petty, A. A., Kwok, R. & Thompson, A. F. Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss. Nat. Commun. 11, 761 (2020).
Li, X. et al. Eddy activity in the Arctic Ocean projected to surge in a warming world. Nat. Clim. Change 14, 156–162 (2024).
Ser-Giacomi, E. et al. Impact of climate change on surface stirring and transport in the Mediterranean Sea. Geophys. Res. Lett. 47, e2020GL089941 (2020).
d’Ovidio, F., Fernández, V., Hernández-García, E. & López, C. Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys. Res. Lett. 31, 17203 (2004).
d’Ovidio, F., Isern-Fontanet, J., López, C., Hernández-García, E. & García-Ladona, E. Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin. Deep Sea Res. I 56, 15–31 (2009).
Hernández-Carrasco, I., López, C., Hernández-García, E. & Turiel, A. How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics?. Ocean Model 36, 208–218 (2011).
Hernández-Carrasco, I., López, C., Hernández-García, E. & Turiel, A. Seasonal and regional characterization of horizontal stirring in the global ocean. J. Geophys. Res. Oceans 117, C10007 (2012).
Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).
Small, R. J. et al. A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst. 6, 1065–1094 (2014).
Chu, J.-E. et al. Reduced tropical cyclone densities and ocean effects due to anthropogenic greenhouse warming. Sci. Adv. 6, eabd5109 (2020).
Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021).
Nellikkattil, A. B. et al. Increased amplitude of atmospheric rivers and associated extreme precipitation in ultra-high-resolution greenhouse warming simulations. Commun. Earth Environ. 4, 313 (2023).
Yun, J., Ha, K.-J. & Lee, S.-S. Impact of greenhouse warming on mesoscale eddy characteristics in high-resolution climate simulations. Environ. Res. Lett. 19, 014078 (2024).
Lellouche, J.-M. et al. The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci. 9, 698876 (2021).
Shimada, K. et al. Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett. 33, L08605 (2006).
Meneghello, G. et al. Genesis and decay of mesoscale baroclinic eddies in the seasonally ice-covered interior Arctic Ocean. J. Phys. Oceanogr. 51, 115–129 (2020).
Waugh, D. W., Abraham, E. R. & Bowen, M. M. Spatial variations of stirring in the surface ocean: a case study of the Tasman Sea. J. Phys. Oceanogr. 36, 526–542 (2006).
Waugh, D. W. & Abraham, E. R. Stirring in the global surface ocean. Geophys. Res. Lett. 35, L20605 (2008).
Jia, F., Wu, L. & Qiu, B. Seasonal modulation of eddy kinetic energy and its formation mechanism in the Southeast Indian Ocean. J. Phys. Oceanogr. 41, 657–665 (2011).
Timmermans, M.-L. & Marshall, J. Understanding Arctic Ocean circulation: a review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans 125, e2018JC014378 (2020).
Timmermans, M.-L. & Toole, J. M. The Arctic Ocean’s Beaufort Gyre. Annu. Rev. Mar. Sci. 15, 223–248 (2023).
Meneghello, G., Marshall, J., Campin, J.-M., Doddridge, E. & Timmermans, M.-L. The ice-ocean governor: ice-ocean stress feedback limits Beaufort Gyre spin-up. Geophys. Res. Lett. 45, 293–11,299 (2018).
Fahrbach, E., Peterson, R. G., Rohardt, G., Schlosser, P. & Bayer, R. Suppression of bottom water formation in the southeastern Weddell sea. Deep Sea Res. I 41, 389–411 (1994).
Thompson, A. F., Stewart, A. L., Spence, P. & Heywood, K. J. The Antarctic slope current in a changing climate. Rev. Geophys. 56, 741–770 (2018).
Thompson, A. F., Speer, K. G. & Schulze Chretien, L. M. Genesis of the Antarctic slope current in West Antarctica. Geophys. Res. Lett. 47, e2020GL087802 (2020).
Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).
Goddard, P. B., Dufour, C. O., Yin, J., Griffies, S. M. & Winton, M. CO2-induced ocean warming of the Antarctic continental shelf in an eddying global climate model. J. Geophys. Res. Oceans 122, 8079–8101 (2017).
Ong, E. Q. Y., England, M. H., Doddridge, E. & Constantinou, N. C. Transient Antarctic slope current response to climate change including meltwater. Geophys. Res. Lett. 52, e2024GL113983 (2025).
Legal, C., Klein, P., Treguier, A.-M. & Paillet, J. Diagnosis of the vertical motions in a mesoscale stirring region. J. Phys. Oceanogr. 37, 1413–1424 (2007).
Chapman, C. C., Lea, M.-A., Meyer, A., Sallée, J.-B. & Hindell, M. Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate. Nat. Clim. Change 10, 209–219 (2020).
Gruber, N. et al. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 4, 787–792 (2011).
Smith, L. C. & Stephenson, S. R. New Trans-Arctic shipping routes navigable by midcentury. Proc. Natl Acad. Sci. USA 110, E1191–E1195 (2013).
Smith, R. et al. The Parallel Ocean Program (POP) Reference Manual Ocean Component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM) Rep. LAUR-01853 (UCAR, 2010)
Hunke, E. C. & Lipscomb, W. H. CICE: The Los Alamos Sea Ice Model User’s Manual, Version 4 (Los Alamos National Laboratory, 2008).
Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time series. Phys. Nonlinear Phenom. 16, 285–317 (1985).
Haller, G. & Yuan, G. Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. Nonlinear Phenom. 147, 352–370 (2000).
Yi, G. et al. Future mesoscale horizontal stirring in polar oceans intensified by sea ice decline: datasets for figures (v1.2). Zenodo https://doi.org/10.5281/zenodo.17120099 (2025).
Yi, G. et al. Future mesoscale horizontal stirring in polar oceans intensified by sea ice decline: analysis and figure code. Zenodo https://doi.org/10.5281/zenodo.16976589 (2025).