Eckart, C. An analysis of the stirring and mixing processes in incompressible fluids. J. Mar. Res. 7, 265–275 (1948).


Google Scholar
 

Müller, P. From stirring to mixing in a stratified ocean. Oceanography 15, 12–19 (2002).

Article 

Google Scholar
 

Olascoaga, M. J. et al. Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett. 40, 6171–6175 (2013).

Article 

Google Scholar
 

Morrison, A. K., Griffies, S. M., Winton, M., Anderson, W. G. & Sarmiento, J. L. Mechanisms of Southern Ocean heat uptake and transport in a global eddying climate model. J. Clim. 29, 2059–2075 (2016).

Dufour, C. O. et al. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr. 45, 3057–3081 (2015).

Yamamoto, A. et al. Roles of the ocean mesoscale in the horizontal supply of mass, heat, carbon, and nutrients to the Northern Hemisphere subtropical gyres. J. Geophys. Res. Oceans 123, 7016–7036 (2018).

Article 

Google Scholar
 

Bracco, A., Provenzale, A. & Scheuring, I. Mesoscale vortices and the paradox of the plankton. Proc. R. Soc. Lond. B 267, 1795–1800 (2000).

Article 
CAS 

Google Scholar
 

Lehahn, Y., d’Ovidio, F., Lévy, M. & Heifetz, E. Stirring of the northeast Atlantic spring bloom: a Lagrangian analysis based on multisatellite data. J. Geophys. Res. Oceans 112, 8005 (2007).

Article 

Google Scholar
 

McKiver, W., Neufeld, Z. & Scheuring, I. Plankton bloom controlled by horizontal stirring. Nonlinear Process. Geophys. 16, 623–630 (2009).

Article 

Google Scholar
 

Lehahn, Y. et al. Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters. Nat. Commun. 8, 14868 (2017).

Article 
CAS 

Google Scholar
 

Logerwell, E. A. & Smith, P. E. Mesoscale eddies and survival of late stage Pacific sardine (Sardinops sagax) larvae. Fish. Oceanogr. 10, 13–25 (2001).

Article 

Google Scholar
 

Shulzitski, K., Sponaugle, S., Hauff, M., Walter, K. D. & Cowen, R. K. Encounter with mesoscale eddies enhances survival to settlement in larval coral reef fishes. Proc. Natl Acad. Sci. USA 113, 6928–6933 (2016).

Article 
CAS 

Google Scholar
 

Tew Kai, E. et al. Top marine predators track Lagrangian coherent structures. Proc. Natl Acad. Sci. USA 106, 8245–8250 (2009).

Article 

Google Scholar
 

Cotte, C. et al. Scale-dependent interactions of Mediterranean whales with marine dynamics. Limnol. Oceanogr. 56, 219–232 (2011).

Article 

Google Scholar
 

Cotté, C., d’Ovidio, F., Dragon, A.-C., Guinet, C. & Lévy, M. Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic circumpolar current. Prog. Oceanogr. 131, 46–58 (2015).

Article 

Google Scholar
 

Meier, W. N. et al. Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52, 185–217 (2014).

Article 

Google Scholar
 

Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Change 143, 228–250 (2016).

Article 

Google Scholar
 

Purich, A. & Doddridge, E. W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 4, 314 (2023).

Article 

Google Scholar
 

Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

Article 
CAS 

Google Scholar
 

Liu, W. & Fedorov, A. V. Global impacts of Arctic sea ice loss mediated by the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 46, 944–952 (2019).

Article 

Google Scholar
 

Vihma, T. Effects of Arctic sea ice decline on weather and climate: a review. Surv. Geophys. 35, 1175–1214 (2014).

Article 

Google Scholar
 

Muilwijk, M., Hattermann, T., Martin, T. & Granskog, M. A. Future sea ice weakening amplifies wind-driven trends in surface stress and Arctic Ocean spin-up. Nat. Commun. 15, 6889 (2024).

Article 

Google Scholar
 

Bhatt, U. et al. Implications of Arctic sea ice decline for the Earth system. Annu. Rev. Environ. Resour. 39, 57–89 (2014).

Article 

Google Scholar
 

Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524 (2013).

Article 
CAS 

Google Scholar
 

Armitage, T. W. K., Manucharyan, G. E., Petty, A. A., Kwok, R. & Thompson, A. F. Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss. Nat. Commun. 11, 761 (2020).

Article 
CAS 

Google Scholar
 

Li, X. et al. Eddy activity in the Arctic Ocean projected to surge in a warming world. Nat. Clim. Change 14, 156–162 (2024).

Article 

Google Scholar
 

Ser-Giacomi, E. et al. Impact of climate change on surface stirring and transport in the Mediterranean Sea. Geophys. Res. Lett. 47, e2020GL089941 (2020).

Article 
CAS 

Google Scholar
 

d’Ovidio, F., Fernández, V., Hernández-García, E. & López, C. Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys. Res. Lett. 31, 17203 (2004).


Google Scholar
 

d’Ovidio, F., Isern-Fontanet, J., López, C., Hernández-García, E. & García-Ladona, E. Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin. Deep Sea Res. I 56, 15–31 (2009).

Article 

Google Scholar
 

Hernández-Carrasco, I., López, C., Hernández-García, E. & Turiel, A. How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics?. Ocean Model 36, 208–218 (2011).

Article 

Google Scholar
 

Hernández-Carrasco, I., López, C., Hernández-García, E. & Turiel, A. Seasonal and regional characterization of horizontal stirring in the global ocean. J. Geophys. Res. Oceans 117, C10007 (2012).

Article 

Google Scholar
 

Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

Article 

Google Scholar
 

Small, R. J. et al. A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst. 6, 1065–1094 (2014).

Article 

Google Scholar
 

Chu, J.-E. et al. Reduced tropical cyclone densities and ocean effects due to anthropogenic greenhouse warming. Sci. Adv. 6, eabd5109 (2020).

Article 
CAS 

Google Scholar
 

Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021).

Article 

Google Scholar
 

Nellikkattil, A. B. et al. Increased amplitude of atmospheric rivers and associated extreme precipitation in ultra-high-resolution greenhouse warming simulations. Commun. Earth Environ. 4, 313 (2023).

Article 

Google Scholar
 

Yun, J., Ha, K.-J. & Lee, S.-S. Impact of greenhouse warming on mesoscale eddy characteristics in high-resolution climate simulations. Environ. Res. Lett. 19, 014078 (2024).

Article 

Google Scholar
 

Lellouche, J.-M. et al. The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci. 9, 698876 (2021).

Article 

Google Scholar
 

Shimada, K. et al. Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett. 33, L08605 (2006).

Article 

Google Scholar
 

Meneghello, G. et al. Genesis and decay of mesoscale baroclinic eddies in the seasonally ice-covered interior Arctic Ocean. J. Phys. Oceanogr. 51, 115–129 (2020).

Article 

Google Scholar
 

Waugh, D. W., Abraham, E. R. & Bowen, M. M. Spatial variations of stirring in the surface ocean: a case study of the Tasman Sea. J. Phys. Oceanogr. 36, 526–542 (2006).

Article 

Google Scholar
 

Waugh, D. W. & Abraham, E. R. Stirring in the global surface ocean. Geophys. Res. Lett. 35, L20605 (2008).

Article 

Google Scholar
 

Jia, F., Wu, L. & Qiu, B. Seasonal modulation of eddy kinetic energy and its formation mechanism in the Southeast Indian Ocean. J. Phys. Oceanogr. 41, 657–665 (2011).

Article 

Google Scholar
 

Timmermans, M.-L. & Marshall, J. Understanding Arctic Ocean circulation: a review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans 125, e2018JC014378 (2020).

Article 

Google Scholar
 

Timmermans, M.-L. & Toole, J. M. The Arctic Ocean’s Beaufort Gyre. Annu. Rev. Mar. Sci. 15, 223–248 (2023).

Article 

Google Scholar
 

Meneghello, G., Marshall, J., Campin, J.-M., Doddridge, E. & Timmermans, M.-L. The ice-ocean governor: ice-ocean stress feedback limits Beaufort Gyre spin-up. Geophys. Res. Lett. 45, 293–11,299 (2018).

Article 

Google Scholar
 

Fahrbach, E., Peterson, R. G., Rohardt, G., Schlosser, P. & Bayer, R. Suppression of bottom water formation in the southeastern Weddell sea. Deep Sea Res. I 41, 389–411 (1994).

Article 

Google Scholar
 

Thompson, A. F., Stewart, A. L., Spence, P. & Heywood, K. J. The Antarctic slope current in a changing climate. Rev. Geophys. 56, 741–770 (2018).

Article 

Google Scholar
 

Thompson, A. F., Speer, K. G. & Schulze Chretien, L. M. Genesis of the Antarctic slope current in West Antarctica. Geophys. Res. Lett. 47, e2020GL087802 (2020).

Article 

Google Scholar
 

Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).

Article 

Google Scholar
 

Goddard, P. B., Dufour, C. O., Yin, J., Griffies, S. M. & Winton, M. CO2-induced ocean warming of the Antarctic continental shelf in an eddying global climate model. J. Geophys. Res. Oceans 122, 8079–8101 (2017).

Article 
CAS 

Google Scholar
 

Ong, E. Q. Y., England, M. H., Doddridge, E. & Constantinou, N. C. Transient Antarctic slope current response to climate change including meltwater. Geophys. Res. Lett. 52, e2024GL113983 (2025).

Article 

Google Scholar
 

Legal, C., Klein, P., Treguier, A.-M. & Paillet, J. Diagnosis of the vertical motions in a mesoscale stirring region. J. Phys. Oceanogr. 37, 1413–1424 (2007).

Article 

Google Scholar
 

Chapman, C. C., Lea, M.-A., Meyer, A., Sallée, J.-B. & Hindell, M. Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate. Nat. Clim. Change 10, 209–219 (2020).

Article 

Google Scholar
 

Gruber, N. et al. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 4, 787–792 (2011).

Article 
CAS 

Google Scholar
 

Smith, L. C. & Stephenson, S. R. New Trans-Arctic shipping routes navigable by midcentury. Proc. Natl Acad. Sci. USA 110, E1191–E1195 (2013).

Article 
CAS 

Google Scholar
 

Smith, R. et al. The Parallel Ocean Program (POP) Reference Manual Ocean Component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM) Rep. LAUR-01853 (UCAR, 2010)

Hunke, E. C. & Lipscomb, W. H. CICE: The Los Alamos Sea Ice Model User’s Manual, Version 4 (Los Alamos National Laboratory, 2008).

Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time series. Phys. Nonlinear Phenom. 16, 285–317 (1985).

Article 

Google Scholar
 

Haller, G. & Yuan, G. Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. Nonlinear Phenom. 147, 352–370 (2000).

Article 

Google Scholar
 

Yi, G. et al. Future mesoscale horizontal stirring in polar oceans intensified by sea ice decline: datasets for figures (v1.2). Zenodo https://doi.org/10.5281/zenodo.17120099 (2025).

Yi, G. et al. Future mesoscale horizontal stirring in polar oceans intensified by sea ice decline: analysis and figure code. Zenodo https://doi.org/10.5281/zenodo.16976589 (2025).