Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).
Boyd, R. W. Nonlinear Optics (Academic Press, 2008).
Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).
Fabre, C. & Treps, N. Modes and states in quantum optics. Rev. Mod. Phys. 92, 035005 (2020).
Moon, J., Cho, Y.-C., Kang, S., Jang, M. & Choi, W. Measuring the scattering tensor of a disordered nonlinear medium. Nat. Phys. 19, 1709–1718 (2023).
Cao, H., Mosk, A. P. & Rotter, S. Shaping the propagation of light in complex media. Nat. Phys. 18, 994–1007 (2022).
Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. 18, 1008–1017 (2022).
Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).
Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nat. Photon. 6, 581–585 (2012).
Baek, Y., Aguiar, H. B. D. & Gigan, S. Phase conjugation with spatially incoherent light in complex media. Nat. Photon. 17, 1114–1119 (2023).
Bouchet, D., Rotter, S. & Mosk, A. P. Maximum information states for coherent scattering measurements. Nat. Phys. 17, 564–568 (2021).
Pai, P., Bosch, J., Kühmayer, M., Rotter, S. & Mosk, A. P. Scattering invariant modes of light in complex media. Nat. Photon. 15, 431–434 (2021).
Gigan, S. Imaging and computing with disorder. Nat. Phys. 18, 980–985 (2022).
Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).
Goel, S. et al. Inverse design of high-dimensional quantum optical circuits in a complex medium. Nat. Phys. 20, 232–239 (2024).
Lib, O. & Bromberg, Y. Quantum light in complex media and its applications. Nat. Phys. 18, 986–993 (2022).
Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2019).
Zhang, C., Huang, Y., Liu, B., Li, C. & Guo, G. Spontaneous parametric down-conversion sources for multiphoton experiments. Adv. Quantum Technol. 4, 2000132 (2021).
Andersen, U. L., Gehring, T., Marquardt, C. & Leuchs, G. 30 years of squeezed light generation. Phys. Scr. 91, 053001 (2016).
Takanashi, N. et al. All-optical phase-sensitive detection for ultra-fast quantum computation. Opt. Express 28, 34916–34926 (2020).
Pereira, S. F., Ou, Z. Y. & Kimble, H. J. Backaction evading measurements for quantum nondemolition detection and quantum optical tapping. Phys. Rev. Lett. 72, 214–217 (1994).
He, G. S. Optical phase conjugation: principles, techniques, and applications. Prog. Quantum Electron. 26, 131–191 (2002).
Wright, L. G., Wu, F. O., Christodoulides, D. N. & Wise, F. W. Physics of highly multimode nonlinear optical systems. Nat. Phys. 18, 1018–1030 (2022).
Cai, Y. et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645 (2017).
Roh, C., Gwak, G., Yoon, Y.-D. & Ra, Y.-S. Generation of three-dimensional cluster entangled state. Nat. Photon. 19, 526–532 (2025).
Presutti, F. et al. Highly multimode visible squeezed light with programmable spectral correlations through broadband up-conversion. Preprint at https://arxiv.org/abs/2401.06119 (2024).
Barakat, I. et al. Simultaneous measurement of multimode squeezing through multimode phase-sensitive amplification. Opt. Quantum 3, 36 (2025).
Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).
Bao, J. et al. Very-large-scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023).
Kovalenko, O. et al. Frequency-multiplexed entanglement for continuous-variable quantum key distribution. Photon. Res. 9, 2351–2359 (2021).
Liu, S., Lou, Y., Chen, Y. & Jing, J. All-optical entanglement swapping. Phys. Rev. Lett. 128, 060503 (2022).
Roman-Rodriguez, V. et al. Multimode squeezed state for reconfigurable quantum networks at telecommunication wavelengths. Phys. Rev. Res. 6, 043113 (2024).
Notarnicola, M. N., Cieciuch, F. & Jarzyna, M. Continuous-variable quantum key distribution over multispan links employing phase-insensitive and phase-sensitive amplifiers. New J. Phys. 26, 043015 (2024).
Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).
Frascella, G. et al. Wide-field SU(1,1) interferometer. Optica 6, 1233–1236 (2019).
Thekkadath, G. S., Bell, B. A., Patel, R. B., Kim, M. S. & Walmsley, I. A. Measuring the joint spectral mode of photon pairs using intensity interferometry. Phys. Rev. Lett. 128, 023601 (2022).
Huo, N. et al. Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. Phys. Rev. Lett. 124, 213603 (2020).
Ra, Y.-S., Jacquard, C., Dufour, A., Fabre, C. & Treps, N. Tomography of a mode-tunable coherent single-photon subtractor. Phys. Rev. X 7, 031012 (2017).
Ansari, V., Harder, G., Allgaier, M., Brecht, B. & Silberhorn, C. Temporal-mode measurement tomography of a quantum pulse gate. Phys. Rev. A 96, 063817 (2017).
Fang, B., Cohen, O., Liscidini, M., Sipe, J. E. & Lorenz, V. O. Fast and highly resolved capture of the joint spectral density of photon pairs. Optica 1, 281–284 (2014).
Lobino, M. et al. Complete characterization of quantum-optical processes. Science 322, 563–566 (2008).
Rahimi-Keshari, S. et al. Quantum process tomography with coherent states. New J. Phys. 13, 013006 (2011).
Wang, X.-B. et al. Efficient tomography of quantum-optical Gaussian processes probed with a few coherent states. Phys. Rev. A 88, 022101 (2013).
Fiurasek, J. Continuous-variable quantum process tomography with squeezed-state probes. Phys. Rev. A 92, 022101–022105 (2015).
Jacob, K. V., Mirasola, A. E., Adhikari, S. & Dowling, J. P. Direct characterization of linear and quadratically nonlinear optical systems. Phys. Rev. A 98, 052327 (2018).
Teo, Y. S., Park, K., Shin, S., Jeong, H. & Marek, P. Highly accurate gaussian process tomography with geometrical sets of coherent states. New J. Phys. 23, 063024 (2021).
Fedorov, I. A., Fedorov, A. K., Kurochkin, Y. V. & Lvovsky, A. I. Tomography of a multimode quantum black box. New J. Phys. 17, 043063 (2015).
O’Brien, J. et al. Quantum process tomography of a controlled-not gate. Phys. Rev. Lett. 93, 080502 (2004).
Kupchak, C., Rind, S., Jordaan, B. & Figueroa, E. Quantum process tomography of an optically-controlled kerr non-linearity. Sci. Rep. 5, 16581 (2015).
Roh, C., Gwak, G. & Ra, Y.-S. Robust squeezed light against mode mismatch using a self imaging optical parametric oscillator. Sci. Rep. 11, 18991 (2021).
Walschaers, M., Ra, Y.-S. & Treps, N. Mode-dependent-loss model for multimode photon-subtracted states. Phys. Rev. A 100, 023828 (2019).
Caruso, F., Eisert, J., Giovannetti, V. & Holevo, A. S. Multi-mode bosonic Gaussian channels. New J. Phys. 10, 083030 (2008).
Ra, Y.-S. et al. Non-Gaussian quantum states of a multimode light field. Nat. Phys. 16, 144–147 (2020).
Patera, G., Treps, N., Fabre, C. & Valcárcel, G. J. D. Quantum theory of synchronously pumped type I optical parametric oscillators: characterization of the squeezed supermodes. Eur. Phys. J. D 56, 123 (2009).
Duan, L.-M., Giedke, G., Cirac, J. I. & Zoller, P. Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722–2725 (2000).
Bachmann, D. et al. Highly transmitting modes of light in dynamic atmospheric turbulence. Phys. Rev. Lett. 130, 073801 (2023).
Madsen, L. S., Usenko, V. C., Lassen, M., Filip, R. & Andersen, U. L. Continuous variable quantum key distribution with modulated entangled states. Nat. Commun. 3, 1083 (2012).
Gebhart, V. et al. Learning quantum systems. Nat. Rev. Phys. 5, 141–156 (2023).
Boyer, V., Marino, A. M., Pooser, R. C. & Lett, P. D. Entangled images from four-wave mixing. Science 321, 544–547 (2008).