Cichocki, A. et al. Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32, 145–163 (2015).

Article 

Google Scholar
 

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

Article 

Google Scholar
 

Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).

Article 

Google Scholar
 

Choquette, J., Gandhi, W., Giroux, O., Stam, N. & Krashinsky, R. Nvidia a100 tensor core GPU: performance and innovation. IEEE Micro 41, 29–35 (2021).

Article 

Google Scholar
 

Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photonics 4, 261–263 (2010).

Article 

Google Scholar
 

Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

Article 

Google Scholar
 

Zuo, Y. et al. All-optical neural network with nonlinear activation functions. Optica 6, 1132–1137 (2019).

Article 

Google Scholar
 

Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photonics 17, 723–730 (2023).

Article 

Google Scholar
 

Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994).

Article 

Google Scholar
 

Yang, L., Ji, R., Zhang, L., Ding, J. & Xu, Q. On-chip CMOS-compatible optical signal processor. Opt. Express 20, 13560–13565 (2012).

Article 

Google Scholar
 

Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).

Article 

Google Scholar
 

Goodman, J. W., Dias, A. & Woody, L. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Opt. Lett. 2, 1–3 (1978).

Article 

Google Scholar
 

Farhat, N. H., Psaltis, D., Prata, A. & Paek, E. Optical implementation of the Hopfield model. Appl. Opt. 24, 1469–1475 (1985).

Article 

Google Scholar
 

Spall, J., Guo, X., Barrett, T. D. & Lvovsky, A. Fully reconfigurable coherent optical vector–matrix multiplication. Opt. Lett. 45, 5752–5755 (2020).

Article 

Google Scholar
 

Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

Article 
MathSciNet 

Google Scholar
 

Liu, C. et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 5, 113–122 (2022).

Article 

Google Scholar
 

Chang, J., Sitzmann, V., Dun, X., Heidrich, W. & Wetzstein, G. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 8, 12324 (2018).

Article 

Google Scholar
 

Bueno, J. et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 5, 756–760 (2018).

Article 

Google Scholar
 

Miscuglio, M. et al. Massively parallel amplitude-only Fourier neural network. Optica 7, 1812–1819 (2020).

Article 

Google Scholar
 

Hu, Z. et al. High-throughput multichannel parallelized diffraction convolutional neural network accelerator. Laser Photonics Rev. 16, 2200213 (2022).

Article 

Google Scholar
 

Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).

Article 

Google Scholar
 

Spall, J., Guo, X. & Lvovsky, A. I. Hybrid training of optical neural networks. Optica 9, 803–811 (2022).

Article 

Google Scholar
 

Moralis-Pegios, M., Giamougiannis, G., Tsakyridis, A., Lazovsky, D. & Pleros, N. Perfect linear optics using silicon photonics. Nat. Commun. 15, 5468 (2024).

Article 

Google Scholar
 

Pintus, P. et al. Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing. Nat. Photonics 19, 54–62 (2025).

Article 

Google Scholar
 

Tsakyridis, A. et al. Photonic neural networks and optics-informed deep learning fundamentals. APL Photonics 9, 011102 (2024).

Article 

Google Scholar
 

Xu, S. et al. Optical coherent dot-product chip for sophisticated deep learning regression. Light Sci. Appl. 10, 221 (2021).

Article 

Google Scholar
 

Ma, G. et al. Dammann gratings-based truly parallel optical matrix multiplication accelerator. Opt. Lett. 48, 2301–2304 (2023).

Article 

Google Scholar
 

Ma, G., Yu, J., Zhu, R. & Zhou, C. Optical multi-imaging–casting accelerator for fully parallel universal convolution computing. Photonics Res. 11, 299–312 (2023).

Article 

Google Scholar
 

Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

Article 

Google Scholar
 

Xu, S., Wang, J., Yi, S. & Zou, W. High-order tensor flow processing using integrated photonic circuits. Nat. Commun. 13, 7970 (2022).

Article 

Google Scholar
 

Yeh, P. & Chiou, A. E. Optical matrix–vector multiplication through four-wave mixing in photorefractive media. Opt. Lett. 12, 138–140 (1987).

Article 

Google Scholar
 

Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

Article 

Google Scholar
 

Dong, B. et al. Partial coherence enhances parallelized photonic computing. Nature 632, 55–62 (2024).

Article 

Google Scholar
 

Luan, C., Davis III, R., Chen, Z., Englund, D. & Hamerly, R. Single-shot matrix–matrix multiplication optical tensor processor for deep learning. Preprint at https://arxiv.org/abs/2503.24356 (2025).

Jiao, L. et al. AI meets physics: a comprehensive survey. Artif. Intell. Rev. 57, 256 (2024).

Article 

Google Scholar
 

Fan, Y. et al. Dispersion-assisted high-dimensional photodetector. Nature 630, 77–83 (2024).

Article 

Google Scholar
 

Latifpour, M. H., Park, B. J., Yamamoto, Y. & Suh, M.-G. Hyperspectral in-memory computing with optical frequency combs and programmable optical memories. Optica 11, 932–939 (2024).

Article 

Google Scholar
 

Chen, Y. 4f-type optical system for matrix multiplication. Opt. Eng 32, 77–79 (1993).

Article 

Google Scholar
 

Hua, S. et al. An integrated large-scale photonic accelerator with ultralow latency. Nature 640, 361–367 (2025).

Article 

Google Scholar
 

Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).

Article 

Google Scholar
 

Fu, T. et al. Photonic machine learning with on-chip diffractive optics. Nat. Commun. 14, 70 (2023).

Article 

Google Scholar
 

Chen, Y. et al. All-analog photoelectronic chip for high-speed vision tasks. Nature 623, 48–57 (2023).

Article 

Google Scholar
 

Bose Plancks gesetz und lichtquantenhypothese. Z. Phys. 26, 178–181 (1924).

Article 

Google Scholar
 

Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25 (eds Pereira, F. et al.) (Curran Associates, 2012).

Vaswani, A. Attention is all you need. In Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) (Curran Associates, 2017).

Dosovitskiy, A. An image is worth 16×16 words: Transformers for image recognition at scale. Preprint at https://arxiv.org/abs/2010.11929 (2020).

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

Article 

Google Scholar
 

Goodman, J. W. Introduction to Fourier Optics (Roberts and Company, 2005).

Deng, L. The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29, 141–142 (2012).

Article 

Google Scholar
 

Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint at https://arxiv.org/abs/1708.07747 (2017).

Simonyan, K. Very deep convolutional networks for large-scale image recognition. Preprint at https://arxiv.org/abs/1409.1556 (2014).

Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In Proc. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Part III 234–241 (eds Navab, N. et al.) (Springer, 2015).

Xue, Z. et al. Fully forward mode training for optical neural networks. Nature 632, 280–286 (2024).

Article 

Google Scholar
 

Spall, J., Guo, X. & Lvovsky, A. I. Training neural networks with end-to-end optical backpropagation. Adv. Photonics 7, 016004–016004 (2025).

Article 

Google Scholar
 

Zhang, Y. Direct tensor processing with coherent light. figshare https://doi.org/10.6084/m9.figshare.30173512 (2025).