Cichocki, A. et al. Tensor decompositions for signal processing applications: from two-way to multiway component analysis. IEEE Signal Process. Mag. 32, 145–163 (2015).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).
Choquette, J., Gandhi, W., Giroux, O., Stam, N. & Krashinsky, R. Nvidia a100 tensor core GPU: performance and innovation. IEEE Micro 41, 29–35 (2021).
Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photonics 4, 261–263 (2010).
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).
Zuo, Y. et al. All-optical neural network with nonlinear activation functions. Optica 6, 1132–1137 (2019).
Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photonics 17, 723–730 (2023).
Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994).
Yang, L., Ji, R., Zhang, L., Ding, J. & Xu, Q. On-chip CMOS-compatible optical signal processor. Opt. Express 20, 13560–13565 (2012).
Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).
Goodman, J. W., Dias, A. & Woody, L. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Opt. Lett. 2, 1–3 (1978).
Farhat, N. H., Psaltis, D., Prata, A. & Paek, E. Optical implementation of the Hopfield model. Appl. Opt. 24, 1469–1475 (1985).
Spall, J., Guo, X., Barrett, T. D. & Lvovsky, A. Fully reconfigurable coherent optical vector–matrix multiplication. Opt. Lett. 45, 5752–5755 (2020).
Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).
Liu, C. et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 5, 113–122 (2022).
Chang, J., Sitzmann, V., Dun, X., Heidrich, W. & Wetzstein, G. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 8, 12324 (2018).
Bueno, J. et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica 5, 756–760 (2018).
Miscuglio, M. et al. Massively parallel amplitude-only Fourier neural network. Optica 7, 1812–1819 (2020).
Hu, Z. et al. High-throughput multichannel parallelized diffraction convolutional neural network accelerator. Laser Photonics Rev. 16, 2200213 (2022).
Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017).
Spall, J., Guo, X. & Lvovsky, A. I. Hybrid training of optical neural networks. Optica 9, 803–811 (2022).
Moralis-Pegios, M., Giamougiannis, G., Tsakyridis, A., Lazovsky, D. & Pleros, N. Perfect linear optics using silicon photonics. Nat. Commun. 15, 5468 (2024).
Pintus, P. et al. Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing. Nat. Photonics 19, 54–62 (2025).
Tsakyridis, A. et al. Photonic neural networks and optics-informed deep learning fundamentals. APL Photonics 9, 011102 (2024).
Xu, S. et al. Optical coherent dot-product chip for sophisticated deep learning regression. Light Sci. Appl. 10, 221 (2021).
Ma, G. et al. Dammann gratings-based truly parallel optical matrix multiplication accelerator. Opt. Lett. 48, 2301–2304 (2023).
Ma, G., Yu, J., Zhu, R. & Zhou, C. Optical multi-imaging–casting accelerator for fully parallel universal convolution computing. Photonics Res. 11, 299–312 (2023).
Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).
Xu, S., Wang, J., Yi, S. & Zou, W. High-order tensor flow processing using integrated photonic circuits. Nat. Commun. 13, 7970 (2022).
Yeh, P. & Chiou, A. E. Optical matrix–vector multiplication through four-wave mixing in photorefractive media. Opt. Lett. 12, 138–140 (1987).
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
Dong, B. et al. Partial coherence enhances parallelized photonic computing. Nature 632, 55–62 (2024).
Luan, C., Davis III, R., Chen, Z., Englund, D. & Hamerly, R. Single-shot matrix–matrix multiplication optical tensor processor for deep learning. Preprint at https://arxiv.org/abs/2503.24356 (2025).
Jiao, L. et al. AI meets physics: a comprehensive survey. Artif. Intell. Rev. 57, 256 (2024).
Fan, Y. et al. Dispersion-assisted high-dimensional photodetector. Nature 630, 77–83 (2024).
Latifpour, M. H., Park, B. J., Yamamoto, Y. & Suh, M.-G. Hyperspectral in-memory computing with optical frequency combs and programmable optical memories. Optica 11, 932–939 (2024).
Chen, Y. 4f-type optical system for matrix multiplication. Opt. Eng 32, 77–79 (1993).
Hua, S. et al. An integrated large-scale photonic accelerator with ultralow latency. Nature 640, 361–367 (2025).
Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).
Fu, T. et al. Photonic machine learning with on-chip diffractive optics. Nat. Commun. 14, 70 (2023).
Chen, Y. et al. All-analog photoelectronic chip for high-speed vision tasks. Nature 623, 48–57 (2023).
Bose Plancks gesetz und lichtquantenhypothese. Z. Phys. 26, 178–181 (1924).
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25 (eds Pereira, F. et al.) (Curran Associates, 2012).
Vaswani, A. Attention is all you need. In Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) (Curran Associates, 2017).
Dosovitskiy, A. An image is worth 16×16 words: Transformers for image recognition at scale. Preprint at https://arxiv.org/abs/2010.11929 (2020).
LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).
Goodman, J. W. Introduction to Fourier Optics (Roberts and Company, 2005).
Deng, L. The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29, 141–142 (2012).
Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. Preprint at https://arxiv.org/abs/1708.07747 (2017).
Simonyan, K. Very deep convolutional networks for large-scale image recognition. Preprint at https://arxiv.org/abs/1409.1556 (2014).
Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In Proc. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Part III 234–241 (eds Navab, N. et al.) (Springer, 2015).
Xue, Z. et al. Fully forward mode training for optical neural networks. Nature 632, 280–286 (2024).
Spall, J., Guo, X. & Lvovsky, A. I. Training neural networks with end-to-end optical backpropagation. Adv. Photonics 7, 016004–016004 (2025).
Zhang, Y. Direct tensor processing with coherent light. figshare https://doi.org/10.6084/m9.figshare.30173512 (2025).