Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025;75(1):10–45.


Google Scholar
 

Compérat E, Amin MB, Cathomas R, et al. Current best practice for bladder cancer: a narrative review of diagnostics and treatments. Lancet (London, England). 2022;400(10364):1712–21.


Google Scholar
 

Baksh SC, Finley LWS. Metabolic diversity drives cancer cell invasion. Nature. 2022;605(7911):627–8.


Google Scholar
 

Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science (New York, NY). 2020;368(6487):eaaw5473.

Lin J, Liu G, Chen L, Kwok HF, Lin Y. Targeting lactate-related cell cycle activities for cancer therapy. Semin Cancer Biol. 2022;86(Pt 3):1231–43.


Google Scholar
 

Feng Q, Liu Z, Yu X, et al. Lactate increases stemness of CD8 + T cells to augment anti-tumor immunity. Nat Commun. 2022;13(1):4981.


Google Scholar
 

Lee JM, Hammarén HM, Savitski MM, Baek SH. Control of protein stability by post-translational modifications. Nat Commun. 2023;14(1):201.


Google Scholar
 

Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–80.


Google Scholar
 

Yu J, Chai P, Xie M, et al. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22(1):85.


Google Scholar
 

Xie B, Lin J, Chen X, et al. CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. Mol Cancer. 2023;22(1):151.


Google Scholar
 

Massari F, Ciccarese C, Santoni M, et al. Metabolic phenotype of bladder cancer. Cancer Treat Rev. 2016;45:46–57.


Google Scholar
 

Lee SJ, Oses-Prieto JA, Kawaguchi R, et al. Hnrnps interacting with mRNA localization motifs define axonal RNA regulons. Mol Cell Proteomics. 2018;17(11):2091–106.


Google Scholar
 

Wang A, Zeng Y, Zhang W, et al. N(6)-methyladenosine-modified SRPK1 promotes aerobic glycolysis of lung adenocarcinoma via PKM splicing. Cell Mol Biol Lett. 2024;29(1):106.


Google Scholar
 

Jiang C, Xu D, Feng H, et al. Hnrnpa1 promotes the metastasis and proliferation of gastric cancer cells through WISP2-guided Wnt/β-catenin signaling pathway. Discov Oncol. 2024;15(1):465.


Google Scholar
 

Wang JM, Liu N, Wei XJ, et al. Regulation of AUF1 alternative splicing by hnRNPA1 and SRSF2 modulate the sensitivity of ovarian cancer cells to cisplatin. Cell Oncol. 2024;47(6):2349–66.


Google Scholar
 

Yang H, Zhu R, Zhao X, et al. Sirtuin-mediated deacetylation of hnRNP A1 suppresses glycolysis and growth in hepatocellular carcinoma. Oncogene. 2019;38(25):4915–31.


Google Scholar
 

Zhu HE, Li T, Shi S, et al. ESCO2 promotes lung adenocarcinoma progression by regulating hnRNPA1 acetylation. Journal of experimental & clinical cancer research : CR. 2021;40(1):64.


Google Scholar
 

Wang T, Ding G, Wang X, et al. Expression of EPB41L2 in Cancer-Associated Fibroblasts: Prognostic Implications for Bladder Cancer and Response to Immunotherapy. Arch Med Res. 2024;55(1):102927.


Google Scholar
 

Chen Z, Zhou L, Liu L, et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun. 2020;11(1):5077.


Google Scholar
 

Zong Z, Ren J, Yang B, Zhang L, Zhou F. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol. 2025;27(4):563–74.


Google Scholar
 

Santos-Martins D, Solis-Vasquez L, Tillack AF, et al. Accelerating AutoDock4 with GPUs and gradient-based local search. J Chem Theory Comput. 2021;17(2):1060–73.


Google Scholar
 

Morgan CE, Meagher JL, Levengood JD, et al. The first crystal structure of the UP1 domain of hnRNP A1 bound to RNA reveals a new look for an old RNA binding protein. J Mol Biol. 2015;427(20):3241–57.


Google Scholar
 

Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996;84(6):843–51.


Google Scholar
 

Chen Q, Yang B, Liu X, et al. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics. 2022;12(11):4935–48.


Google Scholar
 

Lee SY, Lee SH, Choi NH, et al. PCAF promotes R-loop resolution via histone acetylation. Nucleic Acids Res. 2024;52(15):8643–60.


Google Scholar
 

David CJ, Chen M, Assanah M, Canoll P, Manley JL. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 2010;463(7279):364–8.


Google Scholar
 

Chen M, Zhang J, Manley JL. Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Can Res. 2010;70(22):8977–80.


Google Scholar
 

Xia Y, Wang X, Liu Y, et al. PKM2 Is Essential for Bladder Cancer Growth and Maintenance. Can Res. 2022;82(4):571–85.


Google Scholar
 

Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.


Google Scholar
 

Chen J, Huang Z, Chen Y, et al. Lactate and lactylation in cancer. Signal Transduct Target Ther. 2025;10(1):38.


Google Scholar
 

Li H, Sun L, Gao P, Hu H. Lactylation in cancer: current understanding and challenges. Cancer Cell. 2024;42(11):1803–7.


Google Scholar
 

Zhu S, Guo Y, Zhang X, et al. Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett. 2021;503:240–8.


Google Scholar
 

Ma Q, Zeng Q, Wang K, et al. Acetyltransferase P300 regulates glucose metabolic reprogramming through catalyzing succinylation in lung cancer. Int J Mol Sci. 2024. https://doi.org/10.3390/ijms25021057.


Google Scholar
 

Huang H, Zhang D, Weng Y, et al. The regulatory enzymes and protein substrates for the lysine β-hydroxybutyrylation pathway. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abe2771.


Google Scholar
 

Yang K, Fan M, Wang X, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022;29(1):133–46.


Google Scholar
 

Zhang N, Zhang Y, Xu J, et al. Α-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure. Cell Res. 2023;33(9):679–98.


Google Scholar
 

Zong Z, Xie F, Wang S, et al. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell. 2024;187(10):2375-92.e33.


Google Scholar
 

Xiong J, He J, Zhu J, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 2022;82(9):1660-77.e10.


Google Scholar
 

Li N, Pang FX, Zhou YW, et al. Polydatin sensitizes osteosarcoma cells to methotrexate through suppressing the H19/H3K27me3/H3K9me3 mediated folate metabolism regulatory axis. Bioorg Chem. 2025;162:108583.


Google Scholar
 

Zhao Q, Zhang Y, Liu J, et al. Polydatin enhances oxaliplatin-induced cell death by activating NOX5-ROS-mediated DNA damage and ER stress in colon cancer cells. Front Pharmacol. 2024;15:1532695.


Google Scholar
 

Sun K, Zhang X, Shi J, et al. Elevated protein lactylation promotes immunosuppressive microenvironment and therapeutic resistance in pancreatic ductal adenocarcinoma. J Clin Invest. 2025. https://doi.org/10.1172/JCI187024.


Google Scholar
 

Liu Y, Liu P, Duan S, et al. CTCF enhances pancreatic cancer progression via FLG-AS1-dependent epigenetic regulation and macrophage polarization. Cell Death Differ.2025;32(4):745–62.