Ke H, Tang S, Guo T, Hou D, Jiao X, Li S, et al. Landscape of pathogenic mutations in premature ovarian insufficiency. Nat Med. 2023;29(2):483–92. https://doi.org/10.1038/s41591-022-02194-3.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rahman R, Panay N. Diagnosis and management of premature ovarian insufficiency. Best Pract Res Clin Endocrinol Metab. 2021;35(6):101600. https://doi.org/10.1016/j.beem.2021.101600.

Article 
PubMed 

Google Scholar
 

Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, Persani L. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne). 2024;15:1464803. https://doi.org/10.3389/fendo.2024.1464803.

Article 
PubMed 

Google Scholar
 

Hagen-Lillevik S, Johnson J, Lai K. Early postnatal alterations in follicular stress response and survival in a mouse model of classic galactosemia. J Ovarian Res. 2022;15(1):122. https://doi.org/10.1186/s13048-022-01049-2.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nash Z, Davies M. Premature ovarian insufficiency. BMJ. 2024;384:e077469. https://doi.org/10.1136/bmj-2023-077469.

Article 
PubMed 

Google Scholar
 

Liu Y, Pan Z, Wu Y, Song J, Chen J. Comparison of anti-Müllerian hormone and antral follicle count in the prediction of ovarian response: a systematic review and meta-analysis. J Ovarian Res. 2023;16(1):117. https://doi.org/10.1186/s13048-023-01202-5.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang JH, Chen JH, Guo B, Fang Y, Xu ZY, Zhan L, Cao YX. Recent insights into noncoding RNAs in primary ovarian insufficiency: focus on mechanisms and treatments. J Clin Endocrinol Metab. 2023;108(8):1898–908. https://doi.org/10.1210/clinem/dgad070.

Article 
PubMed 

Google Scholar
 

Binder AK, Bremm F, Dörrie J, Schaft N. Non-coding RNA in tumor cells and tumor-associated myeloid cells: function and therapeutic potential. Int J Mol Sci. 2024;25(13):7275. https://doi.org/10.3390/ijms25137275.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bibi A, Bartekova M, Gandhi S, Greco S, Madè A, Sarkar M, et al. Circular RNA regulatory role in pathological cardiac remodelling. Br J Pharmacol. 2025;182(2):316–39. https://doi.org/10.1111/bph.16434.

Article 
PubMed 

Google Scholar
 

Bagheri M, Khansarinejad B, Mondanizadeh M, Azimi M, Alavi S. MiRNAs related in signaling pathways of women’s reproductive diseases: an overview. Mol Biol Rep. 2024;51(1):414. https://doi.org/10.1007/s11033-024-09357-0.

Article 
PubMed 

Google Scholar
 

Dragomir M, Chen B, Calin GA. Exosomal LncRNAs as new players in cell-to-cell communication. Transl Cancer Res. 2018;7(Suppl 2):S243–52. https://doi.org/10.21037/tcr.2017.10.46.

Article 
PubMed 

Google Scholar
 

Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–1325. https://doi.org/10.1152/physrev.00041.2015.

Article 
PubMed 

Google Scholar
 

Mohan N, Dashwood RH, Rajendran P. A–Z of epigenetic readers: targeting alternative splicing and histone modification variants in cancer. Cancers (Basel). 2024;16(6):1104. https://doi.org/10.3390/cancers16061104.

Article 
PubMed 

Google Scholar
 

Zhu Q, Sun J, An C, Li X, Xu S, He Y, et al. Mechanism of LncRNA Gm2044 in germ cell development. Front Cell Dev Biol. 2024;12:1410914. https://doi.org/10.3389/fcell.2024.1410914.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Kimura AP, Yoneda R, Kurihara M, Mayama S, Matsubara S. A long noncoding RNA, lncRNA-Amhr2, plays a role in Amhr2 gene activation in mouse ovarian granulosa cells. Endocrinology. 2017;158(11):4105–21. https://doi.org/10.1210/en.2017-00619.

Article 
PubMed 

Google Scholar
 

Wang F, Chen X, Sun B, Ma Y, Niu W, Zhai J, Sun Y. Hypermethylation-mediated downregulation of LncRNA PVT1 promotes granulosa cell apoptosis in premature ovarian insufficiency via interacting with Foxo3a. J Cell Physiol. 2021;236(7):5162–75. https://doi.org/10.1002/jcp.30222.

Article 
PubMed 

Google Scholar
 

Wang X, Zhang X, Dang Y, Li D, Lu G, Chan WY, et al. Long noncoding RNA HCP5 participates in premature ovarian insufficiency by transcriptionally regulating MSH5 and DNA damage repair via YB1. Nucleic Acids Res. 2020;48(8):4480–91. https://doi.org/10.1093/nar/gkaa127.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Li D, Wang X, Li G, Dang Y, Zhao S, Qin Y. LncRNA ZNF674-AS1 regulates granulosa cell Glycolysis and proliferation by interacting with ALDOA. Cell Death Discov. 2021;7(1):493. https://doi.org/10.1038/s41420-021-00493-1.

Article 

Google Scholar
 

Cho SH, Kim JH, Park HW, Park HS, An HJ, Kim YR, et al. Associations between HOTAIR polymorphisms and risk of primary ovarian insufficiency in Korean women. Maturitas. 2021;144:74–80. https://doi.org/10.1016/j.maturitas.2020.10.023.

Article 
PubMed 

Google Scholar
 

Li D, Wang X, Dang Y, Zhang X, Zhao S, Lu G, et al. LncRNA GCAT1 is involved in premature ovarian insufficiency by regulating p27 translation in granulosa cells via competitive binding to PTBP1. Mol Ther Nucleic Acids. 2020;21:41–52. https://doi.org/10.1016/j.omtn.2020.10.041.

Article 

Google Scholar
 

Li D, Xu W, Wang X, Dang Y, Xu L, Lu G, et al. LncRNA DDGC participates in premature ovarian insufficiency through regulating RAD51 and WT1. Mol Ther Nucleic Acids. 2021;26:15–27. https://doi.org/10.1016/j.omtn.2021.10.015.

Article 

Google Scholar
 

Sun D, Wang Y, Sun N, Jiang Z, Li Z, Wang L, et al. LncRNA DANCR counteracts premature ovarian insufficiency by regulating the senescence process of granulosa cells through stabilizing the interaction between p53 and hNRNPC. J Ovarian Res. 2023;16(1):115. https://doi.org/10.1186/s13048-023-01115-3.

Article 

Google Scholar
 

Ma X, Xu R, Chen J, Wang S, Hu P, Wu Y, et al. The epithelial Na (+) channel in ovarian granulosa cells modulates Ca(2+) mobilization and gonadotrophin signaling for Estrogen homeostasis and female fertility. Cell Commun Signal. 2024;22(1):398. https://doi.org/10.1186/s12964-024-01778-5.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zanjirband M, Baharlooie M, Safaeinejad Z, Nasr-Esfahani MH. Transcriptomic screening to identify hub genes and drug signatures for PCOS based on RNA-Seq data in granulosa cells. Comput Biol Med. 2023;154:106601. https://doi.org/10.1016/j.compbiomed.2023.106601.

Article 
PubMed 

Google Scholar
 

Han Y, Diao J, Wang X, Zhang S, Yuan L, Ping Y, et al. Single-cell RNA sequencing reveals common interactions between follicle immune cells and granulosa cells in premature ovarian insufficiency patients. Biol Reprod. 2025;112(1):156–68. https://doi.org/10.1093/biolre/ioae157.

Article 
PubMed 

Google Scholar
 

Tu J, Chen Y, Li Z, Yang H, Chen H, Yu Z. Long non-coding RNAs in ovarian granulosa cells. J Ovarian Res. 2020;13(1):63. https://doi.org/10.1186/s13048-020-00663-2.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, et al. Induced NcRNAs allosterically modify RNA-binding proteins in Cis to inhibit transcription. Nature. 2008;454(7200):126–30. https://doi.org/10.1038/nature06992.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Luo C, Wei L, Qian F, Bo L, Gao S, Yang G, Mao C. LncRNA HOTAIR regulates autophagy and proliferation mechanisms in premature ovarian insufficiency through the miR-148b-3p/ATG14 axis. Cell Death Discov. 2024;10(1):44. https://doi.org/10.1038/s41420-024-01811-z.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rižner TL, Romano A. Targeting the formation of estrogens for treatment of hormone-dependent diseases: current status. Front Pharmacol. 2023;14:1155558. https://doi.org/10.3389/fphar.2023.1155558.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fatica A, Bozzoni I. Long non-coding rnas: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21. https://doi.org/10.1038/nrg3606.

Article 
PubMed 

Google Scholar
 

Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell. 1999;97(1):17–27. https://doi.org/10.1016/s0092-8674(00)80711-4.

Article 
PubMed 

Google Scholar
 

Anderson RA, Cameron D, Clatot F, Demeestere I, Lambertini M, Nelson SM, Peccatori F. Anti-Müllerian hormone as a marker of ovarian reserve and premature ovarian insufficiency in children and women with cancer: a systematic review. Hum Reprod Update. 2022;28(3):417–34. https://doi.org/10.1093/humupd/dmac004.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Panay N, Anderson RA, Bennie A, Cedars M, Davies M, Ee C, et al. Evidence-based guideline: premature ovarian insufficiency. Hum Reprod Open. 2024;2024(4):hoae065. https://doi.org/10.1093/hropen/hoae065.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016;22(6):709–24. https://doi.org/10.1093/humupd/dmw027.

Article 
PubMed 

Google Scholar
 

Paradies G, Petrosillo G, Paradies V, Ruggiero FM. Oxidative stress, mitochondrial bioenergetics, and Cardiolipin in aging. Free Radic Biol Med. 2010;48(10):1286–95. https://doi.org/10.1016/j.freeradbiomed.2010.02.020.

Article 
PubMed 

Google Scholar
 

Wen X, Tang L, Zhong R, Liu L, Chen L, Zhang H. Role of mitophagy in regulating intestinal oxidative damage. Antioxid (Basel). 2023;12(2):480. https://doi.org/10.3390/antiox12020480.

Article 

Google Scholar
 

Tiosano D, Mears JA, Buchner DA, et al. Mitochondrial dysfunction in primary ovarian insufficiency. Endocrinology. 2019;160(10):2353–66. https://doi.org/10.1210/en.2019-00441.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Yang F, Zou Y. The effect of LncRNA MEG3 regulation of AMPK-mTOR autophagy pathway on H₂O₂-induced oxidative stress damage in human ovarian granulosa cells. Chin J Eugen Genet. 2024;32(7):1327–35. (in Chinese).


Google Scholar
 

Chen X, Tang H, Liang Y, Wu P, Xie L, Ding Y, et al. Acupuncture regulates the autophagy of ovarian granulosa cells in polycystic ovarian syndrome ovulation disorder by inhibiting the PI3K/AKT/mTOR pathway through LncMEG3. Biomed Pharmacother. 2021;144:112288. https://doi.org/10.1016/j.biopha.2021.112288.

Article 
PubMed 

Google Scholar
 

Chen Y, Chen Y, Cui X, He Q, Li H. Down-regulation of MALAT1 aggravates polycystic ovary syndrome by regulating miR-302d-3p-mediated leukemia inhibitory factor activity. Life Sci. 2021;277:119076. https://doi.org/10.1016/j.lfs.2021.119076.

Article 
PubMed 

Google Scholar
 

Yang C, Fan H, Wu Y, Liang Z, Wang Y, Wu A, et al. T-2 toxin exposure induces ovarian damage in sows: LncRNA CUFF.253988.1 promotes cell apoptosis by inhibiting the SIRT3/PGC1α pathway. Ecotoxicol Environ Saf. 2024;283:116787. https://doi.org/10.1016/j.ecoenv.2024.116787.

Article 
PubMed 

Google Scholar
 

Zhao Y, Zhou L, Li H, Sun T, Wen X, Li X, et al. Nuclear-encoded LncRNA MALAT1 epigenetically controls metabolic reprogramming in HCC cells through the mitophagy pathway. Mol Ther Nucleic Acids. 2021;23:264–76. https://doi.org/10.1016/j.omtn.2020.09.040.

Article 
PubMed 

Google Scholar
 

Shi C, Zhang L, Qin C. Long non-coding RNAs in brain development, synaptic biology, and alzheimer’s disease. Brain Res Bull. 2017;132:160–9. https://doi.org/10.1016/j.brainresbull.2017.03.010.

Article 
PubMed 

Google Scholar
 

Xu S, Herschman HR. A tumor agnostic therapeutic strategy for hexokinase 1-null/hexokinase 2-positive cancers. Cancer Res. 2019;79(23):5907–14. https://doi.org/10.1158/0008-5472.can-19-1789.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Watanuki S, Kobayashi H, Sugiura Y, Yamamoto M, Karigane D, Shiroshita K, et al. SDHAF1 confers metabolic resilience to aging hematopoietic stem cells by promoting mitochondrial ATP production. Cell Stem Cell. 2024;31(8):1145–e116115. https://doi.org/10.1016/j.stem.2024.04.023.

Article 
PubMed 

Google Scholar
 

Chen F, Li X, Feng X, Gao T, Zhang W, Cheng Z, et al. Long noncoding RNA Lx8-SINE B2 interacts with Eno1 to regulate self-renewal and metabolism of embryonic stem cells. Stem Cells. 2022;40(12):1094–106. https://doi.org/10.1093/stmcls/sxac067.

Article 
PubMed 

Google Scholar
 

Sun Z, Zhu M, Lv P, Cheng L, Wang Q, Tian P, et al. The long noncoding RNA Lncenc1 maintains naïve States of mouse ESCs by promoting the Glycolysis pathway. Stem Cell Rep. 2018;11(3):741–55. https://doi.org/10.1016/j.stemcr.2018.08.001.

Article 

Google Scholar
 

Kalamara V, Garinis GA. The epitranscriptome: reshaping the DNA damage response. Trends Cell Biol. 2024;34(9):727–38. https://doi.org/10.1016/j.tcb.2024.06.008.

Article 

Google Scholar
 

Leem J, Lee C, Choi DY, Oh JS. Distinct characteristics of the DNA damage response in mammalian oocytes. Exp Mol Med. 2024;56(2):319–28. https://doi.org/10.1038/s12276-024-01178-2.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhou FY, Waterman DP, Ashton M, Caban-Penix S, Memisoglu G, Eapen VV, Haber JE. Prolonged cell cycle arrest in response to DNA damage in yeast requires the maintenance of DNA damage signaling and the spindle assembly checkpoint. eLife. 2024;13:e94334. https://doi.org/10.7554/eLife.94334.

Article 

Google Scholar
 

Maiuri T, Suart CE, Hung CLK, Graham KJ, Barba Bazan CA, Truant R. DNA damage repair in huntington’s disease and other neurodegenerative diseases. Neurotherapeutics. 2019;16(4):948–56. https://doi.org/10.1007/s13311-019-00768-7.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Colacurci N, De Leo V, Ruvolo G, Piomboni P, Caprio F, Pivonello R, et al. Recombinant FSH improves sperm DNA damage in male infertility: a phase II clinical trial. Front Endocrinol (Lausanne). 2018;9:383. https://doi.org/10.3389/fendo.2018.00383.

Article 
PubMed 

Google Scholar
 

Morio T. Recent advances in the study of immunodeficiency and DNA damage response. Int J Hematol. 2017;106(3):357–65. https://doi.org/10.1007/s12185-017-2263-8.

Article 
PubMed 

Google Scholar
 

Luo Z, Huang Y, Chen S, Zhang B, Huang H, Dabiri S, et al. Delivery of PARP inhibitors through 2HG-incorporated liposomes for synergistically targeting DNA repair in cancer. Cancer Lett. 2024;604:217268. https://doi.org/10.1016/j.canlet.2024.217268.

Article 
PubMed 

Google Scholar
 

Wu H, Han Y, Liu J, Zhao R, Dai S, Guo Y, et al. The assembly and activation of the PANoptosome promote Porcine granulosa cell programmed cell death during follicular Atresia. J Anim Sci Biotechnol. 2024;15(1):147. https://doi.org/10.1186/s40104-024-01107-3.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang D, Zhang X, Zeng M, Yuan J, Liu M, Yin Y, et al. Increased DNA damage and repair deficiency in granulosa cells are associated with ovarian aging in rhesus monkeys. J Assist Reprod Genet. 2015;32(7):1069–78. https://doi.org/10.1007/s10815-015-0483-5.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ma LZ, Wang A, Lai YH, Zhang J, Zhang XF, Chen SL, Zhou XY. USP14 Inhibition promotes DNA damage repair and represses ovarian granulosa cell senescence in premature ovarian insufficiency. J Transl Med. 2024;22(1):834. https://doi.org/10.1186/s12967-024-05636-3.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dou X, Guo T, Li G, Zhou L, Qin Y, Chen ZJ. Minichromosome maintenance complex component 8 mutations cause primary ovarian insufficiency. Fertil Steril. 2016;106(6):1485–e14922. https://doi.org/10.1016/j.fertnstert.2016.08.018.

Article 
PubMed 

Google Scholar
 

Guo T, Zhao S, Zhao S, Chen M, Li G, Jiao X, et al. Mutations in MSH5 in primary ovarian insufficiency. Hum Mol Genet. 2017;26(8):1452–7. https://doi.org/10.1093/hmg/ddx044.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Weinberg-Shukron A, Rachmiel M, Renbaum P, Gulsuner S, Walsh T, Lobel O, et al. Essential role of BRCA2 in ovarian development and function. N Engl J Med. 2018;379(11):1042–9. https://doi.org/10.1056/NEJMoa1800024.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Qin Y, Zhang F, Chen ZJ. BRCA2 in ovarian development and function. N Engl J Med. 2019;380(11):1086. https://doi.org/10.1056/NEJMc1813800.

Article 
PubMed 

Google Scholar
 

Liu B, Liu L, Sulaiman Z, Wang C, Wang L, Zhu J, et al. Comprehensive analysis of lncRNA–miRNA–mRNA CeRNA network and key genes in granulosa cells of patients with biochemical primary ovarian insufficiency. J Assist Reprod Genet. 2023;40(10):2047–58. https://doi.org/10.1007/s10815-023-02937-2.

Article 

Google Scholar
 

Huang QY, Chen SR, Chen JM, Shi QY, Lin S. Therapeutic options for premature ovarian insufficiency: an updated review. Reprod Biol Endocrinol. 2022;20(1):28. https://doi.org/10.1186/s12958-022-00892-8.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rosario R, Stewart HL, Choudhury NR, Michlewski G, Charlet-Berguerand N, Anderson RA. Evidence for a fragile X messenger ribonucleoprotein 1 (FMR1) mRNA gain-of-function toxicity mechanism contributing to the pathogenesis of fragile X-associated premature ovarian insufficiency. FASEB J. 2022;36(11):e22612. https://doi.org/10.1096/fj.202200468RR.

Article 
PubMed 

Google Scholar
 

Murray A, Ennis S, MacSwiney F, Webb J, Morton NE. Reproductive and menstrual history of females with fragile X expansions. Eur J Hum Genet. 2000;8(4):247–52. https://doi.org/10.1038/sj.ejhg.5200451.

Article 
PubMed 

Google Scholar
 

Sullivan SD, Welt C, Sherman S. FMR1 and the continuum of primary ovarian insufficiency. Semin Reprod Med. 2011;29(4):299–307. https://doi.org/10.1055/s-0031-1280915.

Article 
PubMed 

Google Scholar
 

Huang J, Zhang W, Liu Y, Liu Y, Wang J, Jiang H. Association between the FMR1 CGG repeat lengths and the severity of idiopathic primary ovarian insufficiency: a meta-analysis. Artif Cells Nanomed Biotechnol. 2019;47(1):3116–22. https://doi.org/10.1080/21691401.2019.1645153.

Article 
PubMed 

Google Scholar
 

Ma L, Herren AW, Espinal G, Randol J, McLaughlin B, Martinez-Cerdeño V, et al. Composition of the intranuclear inclusions of fragile X-associated tremor/ataxia syndrome. Acta Neuropathol Commun. 2019;7(1):143. https://doi.org/10.1186/s40478-019-0796-1.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bianchi E, Barbagallo F, Valeri C, Geremia R, Salustri A, De Felici M, Sette C. Ablation of the Sam68 gene impairs female fertility and gonadotropin-dependent follicle development. Hum Mol Genet. 2010;19(24):4886–94. https://doi.org/10.1093/hmg/ddq422.

Article 
PubMed 

Google Scholar
 

Pagano G, Lyakhovich A, Pallardó FV, Tiano L, Zatterale A, Trifuoggi M. Mitochondrial dysfunction in fragile X syndrome and fragile X-associated tremor/ataxia syndrome: prospective use of antioxidants and mitochondrial nutrients. Mol Biol Rep. 2024;51(1):480. https://doi.org/10.1007/s11033-024-09415-7.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Alvarez-Mora MI, Rodriguez-Revenga L, Madrigal I, Guitart-Mampel M, Garrabou G, Milà M. Impaired mitochondrial function and dynamics in the pathogenesis of FXTAS. Mol Neurobiol. 2017;54(9):6896–902. https://doi.org/10.1007/s12035-016-0194-7.

Article 
PubMed 

Google Scholar
 

Khalil AM, Faghihi MA, Modarresi F, Brothers SP, Wahlestedt C. A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome. PLoS ONE. 2008;3(1):e1486. https://doi.org/10.1371/journal.pone.0001486.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pastori C, Peschansky VJ, Barbouth D, Mehta A, Silva JP, Wahlestedt C. Comprehensive analysis of the transcriptional landscape of the human FMR1 gene reveals two new long noncoding RNAs differentially expressed in fragile X syndrome and fragile X-associated tremor/ataxia syndrome. Hum Genet. 2014;133(1):59–67. https://doi.org/10.1007/s00439-013-1356-6.

Article 
PubMed 

Google Scholar
 

Elizur SE, Dratviman-Storobinsky O, Derech-Haim S, Lebovitz O, Dor J, Orvieto R, Cohen Y. FMR6 May play a role in the pathogenesis of fragile X-associated premature ovarian insufficiency. Gynecol Endocrinol. 2016;32(4):334–7. https://doi.org/10.3109/09513590.2015.1116508.

Article 
PubMed 

Google Scholar
 

Allen EG, Charen K, Hipp HS, Shubeck L, Amin A, He W, et al. Refining the risk for fragile X-associated primary ovarian insufficiency by FMR1 CGG repeat size. Genet Med. 2021;23(9):1648–55. https://doi.org/10.1038/s41436-021-01177-y.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tu J, Chen Y, Li Z, Yang H, Chen H, Yu Z. Long non-coding RNAs in ovarian granulosa cells. J Ovarian Res. 2020;13(1):63. https://doi.org/10.1186/s13048-020-00663-2.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hu H, Zhang J, Xin X, Jin Y, Zhu Y, Zhang H, et al. Bushen Jianpi Tiaoxue Decoction inhibits the LIF–mTOR signaling axis to regulate mitochondrial function and alleviate cyclophosphamide-induced diminished ovarian reserve. Apoptosis. 2025;30(5–6):1331–50. https://doi.org/10.1007/s10495-025-02093-1.

Article 
PubMed 

Google Scholar
 

Klinge CM. Estrogenic control of mitochondrial function. Redox Biol. 2020;31:101435. https://doi.org/10.1016/j.redox.2020.101435.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Huang J, Zhao J, Geng X, Chu W, Li S, Chen ZJ, Du Y. Long non-coding RNA lnc-CCNL1-3:1 promotes granulosa cell apoptosis and suppresses glucose uptake in women with polycystic ovary syndrome. Mol Ther Nucleic Acids. 2021;23:614–28. https://doi.org/10.1016/j.omtn.2020.12.008.

Article 
PubMed 

Google Scholar
 

Jin L, Yang Q, Zhou C, Liu L, Wang H, Hou M, et al. Profiles for long non-coding RNAs in ovarian granulosa cells from women with PCOS with or without hyperandrogenism. Reprod Biomed Online. 2018;37(5):613–23. https://doi.org/10.1016/j.rbmo.2018.08.005.

Article 
PubMed 

Google Scholar
 

Tatone C, Di Emidio G, Battaglia R, Di Pietro C. Building a human ovarian antioxidant CeRNA network ovanox: a bioinformatic perspective for research on redox-related ovarian functions and dysfunctions. Antioxid (Basel). 2024;13(9):1101. https://doi.org/10.3390/antiox13091101.

Article 

Google Scholar
 

Huang X, Chen J, Li H, Cai Y, Liu L, Dong Q, et al. LncRNA SNHG12 suppresses adipocyte inflammation and insulin resistance by regulating the HDAC9/Nrf2 axis. FASEB J. 2024;38(13):e23794. https://doi.org/10.1096/fj.202400236RR.

Article 
PubMed 

Google Scholar
 

Xia X, Zhang H, Xia P, Zhu Y, Liu J, Xu K, Yuan Y. Identification of Glycolysis-related LncRNAs and the novel LncRNA WAC-AS1 promotes Glycolysis and tumor progression in hepatocellular carcinoma. Front Oncol. 2021;11:733595. https://doi.org/10.3389/fonc.2021.733595.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu JB, Zhang JB, Yan XM, Xie PG, Fu Y, Fu XH, et al. DNA double-strand break-related competitive endogenous RNA network of noncoding RNA in bovine cumulus cells. Genes (Basel). 2023;14(2):290. https://doi.org/10.3390/genes14020290.

Article 
PubMed 

Google Scholar
 

Elizur SE, Friedman Gohas M, Dratviman-Storobinsky O, Cohen Y. Pathophysiology mechanisms in fragile-X primary ovarian insufficiency. Methods Mol Biol. 2019;1942:165–71. https://doi.org/10.1007/978-1-4939-9080-1_14.

Article 
PubMed 

Google Scholar
 

Alvarez-Mora MI, Agusti I, Wijngaard R, Martinez-Barrios E, Barcos T, Borras A, et al. Evaluation of FMR4, FMR5 and FMR6 expression levels as non-invasive biomarkers for the diagnosis of fragile X-associated primary ovarian insufficiency. J Clin Med. 2022;11(8):2186. https://doi.org/10.3390/jcm11082186.

Article 
PubMed 
PubMed Central 

Google Scholar