Mika, J. et al. Symptom-based early-stage differentiation between SARS-CoV-2 versus other respiratory tract infections—Upper Silesia pilot study. Sci. Rep. 11 (1), 13580 (2021).

ADS 
MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, J., Garrett, S. & Sun, J. Gastrointestinal symptoms, pathophysiology, and treatment in COVID-19. Genes Dis. 8 (4), 385–400 (2021).

CAS 
PubMed 

Google Scholar
 

Basu-Ray, I., Almaddah, N., Adeboye, A. & Soos, M. P. Cardiac Manifestations Of Coronavirus (COVID-19). StatPearls. Treasure Island (FL)2022.

Wang, X., Lei, J., Li, Z. & Yan, L. Potential effects of coronaviruses on the liver: an update. Front. Med. 8. (2021).

Li, Y. C., Bai, W. Z. & Hashikawa, T. The neuroinvasive potential of SARS-CoV2 May play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 92 (6), 552–555 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mohseni Afshar, Z. et al. Dermatological manifestations associated with COVID-19: A comprehensive review of the current knowledge. J. Med. Virol. 93 (10), 5756–5767 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Singh, H., Kaur, H., Singh, K. & Sen, C. K. Cutaneous manifestations of COVID-19: A systematic review. Adv. Wound Care (New Rochelle). 10 (2), 51–80 (2021).

PubMed 

Google Scholar
 

Conforti, C. et al. Cutaneous manifestations in confirmed COVID-19 patients: A systematic review. Biology (Basel) ;9(12). (2020).

Hayderi, L. E., Nikkels-Tassoudji, N. & Nikkels, A. F. Hair loss after varicella Zoster virus infection. Case Rep. Dermatol. 5 (1), 43–47 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Chu, C-B. & Yang, C-C. Dengue-associated Telogen effluvium: A report of 14 patients. Dermatologica Sinica. 35 (3), 124–126 (2017).


Google Scholar
 

Hussain, N. et al. A systematic review of acute Telogen effluvium, a harrowing post-COVID-19 manifestation. J. Med. Virol. 94 (4), 1391–1401 (2022).

CAS 
PubMed 

Google Scholar
 

Lv, S. et al. A case of acute Telogen effluvium after SARS-CoV-2 infection. Clin. Cosmet. Investig Dermatol. 14, 385–387 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rizzetto, G. et al. Telogen effluvium related to post severe Sars-Cov-2 infection: clinical aspects and our management experience. Dermatol. Ther. 34 (1), e14547 (2021).

CAS 
PubMed 

Google Scholar
 

Sattur, S. S. & Sattur, I. S. COVID-19 infection: impact on hair. Indian J. Plast. Surg. 54 (4), 521–526 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Shanshal, M. COVID-19 related anagen effluvium. J. Dermatolog Treat. 33 (2), 1114–1115 (2022).

CAS 
PubMed 

Google Scholar
 

Seyfi, S., Alijanpour, R., Aryanian, Z., Ezoji, K. & Mahmoudi, M. Prevalence of Telogen effluvium hair loss in COVID-19 patients and its relationship with disease severity. J. Med. Life. 15 (5), 631–634 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Shendre, M. E. R., Thejaswi, S. R., Mendagudli, C., Nair, V. U. & Rajesh, S. Acute Telogen effluvium: A Post-COVID-19 sequela. Clin. Dermatology Rev. 7 (2), 158–160 (2023).


Google Scholar
 

Awad, N., Obaid, Z. M., Zaky, M. S. & Elsaie, M. L. Hair disorders associated with post-COVID-19 infection in females: a cross-sectional study. Ir. J. Med. Sci. 193 (2), 761–767 (2024).

PubMed 

Google Scholar
 

Iancu, G. M. et al. SARS-CoV-2 Infection-A trigger factor for Telogen effluvium: review of the literature with a Case-Based guidance for clinical evaluation. Life (Basel) ;13(7). (2023).

Ji, S., Zhu, Z., Sun, X. & Fu, X. Functional hair follicle regeneration: an updated review. Signal. Transduct. Target. Therapy. 6 (1), 66 (2021).


Google Scholar
 

Yu, J., Yu, D. W., Checkla, D. M., Freedberg, I. M. & Bertolino, A. P. Human hair keratins. J. Invest. Dermatol. 101 (1 Suppl), 56s–9s (1993).

CAS 
PubMed 

Google Scholar
 

Lolli, F. et al. Androgenetic alopecia: a review. Endocrine 57 (1), 9–17 (2017).

MathSciNet 
CAS 
PubMed 

Google Scholar
 

Rebora, A. Telogen effluvium: a comprehensive review. Clin. Cosmet. Investig Dermatol. 12, 583–590 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Grover, C. & Khurana, A. Telogen effluvium. Indian J. Dermatol. Venereol. Leprol. 79 (5), 591–603 (2013).

PubMed 

Google Scholar
 

Malkud, S. Telogen effluvium: A review. J. Clin. Diagn. Res. 9 (9), WE01–3 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Phillips, T. G., Slomiany, W. P. & Allison, R. Hair loss: common causes and treatment. Am. Fam Physician. 96 (6), 371–378 (2017).

PubMed 

Google Scholar
 

Alessandrini, A., Bruni, F., Piraccini, B. M. & Starace, M. Common causes of hair loss – clinical manifestations, trichoscopy and therapy. J. Eur. Acad. Dermatol. Venereol. 35 (3), 629–640 (2021).

CAS 
PubMed 

Google Scholar
 

Asghar, F., Shamim, N., Farooque, U., Sheikh, H. & Aqeel, R. Telogen effluvium: A review of the literature. Cureus 12 (5), e8320 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Mieczkowska, K. et al. Telogen effluvium: a sequela of COVID-19. Int. J. Dermatol. 60 (1), 122–124 (2021).

CAS 
PubMed 

Google Scholar
 

Olds, H. et al. Telogen effluvium associated with COVID-19 infection. Dermatol. Ther. 34 (2), e14761 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Aksoy, H., Yıldırım, U. M., Ergen, P. & Gürel, M. S. COVID-19 induced Telogen effluvium. Dermatol. Ther. 34 (6), e15175 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Goren, A. et al. A preliminary observation: male pattern hair loss among hospitalized COVID-19 patients in Spain – A potential clue to the role of androgens in COVID-19 severity. J. Cosmet. Dermatol. 19 (7), 1545–1547 (2020).

PubMed 

Google Scholar
 

Abrantes, T. F. et al. Time of onset and duration of post-COVID-19 acute Telogen effluvium. J. Am. Acad. Dermatol. 85 (4), 975–976 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Koç Yıldırım, S., Erbağcı, E. & Demirel Öğüt, N. Evaluation of patients with Telogen effluvium during the pandemic: May the monocytes be responsible for post COVID-19 Telogen effluvium? J. Cosmet. Dermatol. 21 (5), 1809–1815 (2022).

PubMed 
PubMed Central 

Google Scholar
 

CorrĂŞa Giron, C., Laaksonen, A. & Barroso da Silva, F. L. On the interactions of the receptor-binding domain of SARS-CoV-1 and SARS-CoV-2 Spike proteins with monoclonal antibodies and the receptor ACE2. Virus Res. 285, 198021 (2020).

PubMed 

Google Scholar
 

Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23 (1), 3–20 (2022).

CAS 
PubMed 

Google Scholar
 

Steiner, S. et al. SARS-CoV-2 biology and host interactions. Nat. Rev. Microbiol. 22 (4), 206–225 (2024).

CAS 
PubMed 

Google Scholar
 

Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181 (2), 271– (2020). – 80.e8.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mazeto, I. F. S. et al. Ultrastructural evidence for anagen hair follicle infection with SARS-CoV-2 in early-onset COVID-19 effluvium. J. Eur. Acad. Dermatol. Venereol. 36 (11), e865–e7 (2022).

CAS 
PubMed 

Google Scholar
 

Limat, A. & Hunziker, T. Cultivation of keratinocytes from the outer root sheath of human hair follicles. Methods Mol. Med. 2, 21–31 (1996).

CAS 
PubMed 

Google Scholar
 

Prost-Squarcioni, C. [Histology of skin and hair follicle]. Med. Sci. (Paris). 22 (2), 131–137 (2006).

PubMed 

Google Scholar
 

Martino, P. A., Heitman, N. & Rendl, M. The dermal sheath: an emerging component of the hair follicle stem cell niche. Exp. Dermatol. 30 (4), 512–521 (2021).

PubMed 

Google Scholar
 

Lyle, S. et al. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell. Sci. 111 (Pt 21), 3179–3188 (1998).

CAS 
PubMed 

Google Scholar
 

Schweizer, J. et al. New consensus nomenclature for mammalian keratins. J. Cell. Biol. 174 (2), 169–174 (2006).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moll, R., Divo, M. & Langbein, L. The human keratins: biology and pathology. Histochem. Cell. Biol. 129 (6), 705–733 (2008).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bragulla, H. H. & Homberger, D. G. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J. Anat. 214 (4), 516–559 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lenoir, M. C., Bernard, B. A., Pautrat, G., Darmon, M. & Shroot, B. Outer root sheath cells of human hair follicle are able to regenerate a fully differentiated epidermis in vitro. Dev. Biol. 130 (2), 610–620 (1988).

CAS 
PubMed 

Google Scholar
 

Xue, X. et al. High expression of ACE2 on keratinocytes reveals skin as a potential target for SARS-CoV-2. J. Invest. Dermatol. 141 (1), 206–9e1 (2021).

CAS 
PubMed 

Google Scholar
 

Klingenstein, M. et al. Evidence of SARS-CoV2 entry protein ACE2 in the human nose and olfactory bulb. Cells Tissues Organs. 209 (4–6), 155–164 (2020).

CAS 
PubMed 

Google Scholar
 

Wagner, V. P. et al. Histogenesis of keratoacanthoma: histochemical and immunohistochemical study. oral Surgery, oral medicine. Oral Pathol. Oral Radiol. 119 (3), 310–317 (2015).


Google Scholar
 

Kobielak, K., Pasolli, H. A., Alonso, L., Polak, L. & Fuchs, E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J. Cell. Biol. 163 (3), 609–623 (2003).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rogers, M. A., Winter, H., Schweizer, J., Langbein, L. & Praetzel, S. K6irs1, K6irs2, K6irs3, and K6irs4 represent the Inner-Root-Sheath-Specific type II epithelial keratins of the human hair Follicle1. J. Invest. Dermatology. 120 (4), 512–522 (2003).


Google Scholar
 

Sperling, L. C., Hussey, S., Sorrells, T., Wang, J. A. & Darling, T. Cytokeratin 75 expression in central, centrifugal, cicatricial alopecia–new observations in normal and diseased hair follicles. J. Cutan. Pathol. 37 (2), 243–248 (2010).

PubMed 

Google Scholar
 

Clemmensen, O. J., Hainau, B. & Hansted, B. The ultrastructure of the transition zone between specialized cells (Flugelzellen) of huxley’s layer of the inner root sheath and cells of the outer root sheath of the human hair follicle. Am. J. Dermatopathol. 13 (3), 264–270 (1991).

CAS 
PubMed 

Google Scholar
 

Klingenstein, S., Klingenstein, M., Kleger, A. & Liebau, S. From hair to iPSCs-A guide on how to reprogram keratinocytes and why. Curr. Protoc. Stem Cell. Biol. 55 (1), e121 (2020).

PubMed 

Google Scholar
 

Ho, M. et al. Update of the keratin gene family: evolution, tissue-specific expression patterns, and relevance to clinical disorders. Hum. Genomics. 16 (1), 1 (2022).

MathSciNet 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moll, R. [Cytokeratins as markers of differentiation. Expression profiles in epithelia and epithelial tumors]. Veroff Pathol. 142, 1–197 (1993).

CAS 
PubMed 

Google Scholar
 

Moll, R., Divo, M. & Langbein, L. The human keratins: biology and pathology. Histochem. Cell Biol. 129 (6), 705 (2008).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hikmet, F. et al. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol. 16 (7), e9610 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, M-Y., Li, L., Zhang, Y. & Wang, X-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty. 9 (1), 45 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Salamanna, F., Maglio, M., Landini, M. P. & Fini, M. Body localization of ACE-2: on the trail of the keyhole of SARS-CoV-2. Front. Med. (Lausanne). 7, 594495 (2020).

PubMed 

Google Scholar
 

Li, F. et al. Distinct mechanisms for TMPRSS2 expression explain organ-specific Inhibition of SARS-CoV-2 infection by enzalutamide. Nat. Commun. 12 (1), 866 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dong, M. et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed. Pharmacother. 131, 110678 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Nersisyan, S., Shkurnikov, M., Turchinovich, A., Knyazev, E. & Tonevitsky, A. Integrative analysis of MiRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2. PLoS One. 15 (7), e0235987 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in Understanding SARS pathogenesis. J. Pathol. 203 (2), 631–637 (2004).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Koupenova, M. et al. SARS-CoV-2 initiates programmed cell death in platelets. Circ. Res. 129 (6), 631–646 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, J. et al. Understanding the role of SARS-CoV-2 ORF3a in viral pathogenesis and COVID-19. Front. Microbiol. 13, 854567 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Premeaux, T. A. et al. Emerging insights on caspases in COVID-19 Pathogenesis, Sequelae, and directed therapies. Front. Immunol. 13, 842740 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hagman, K. et al. Prevalence and clinical relevance of viraemia in viral respiratory tract infections: a systematic review. Lancet Microbe. 6 (2), 100967 (2025).

PubMed 

Google Scholar
 

Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 612 (7941), 758–763 (2022).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yuan, C. et al. The role of cell death in SARS-CoV-2 infection. Signal. Transduct. Target. Ther. 8 (1), 357 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pontelli, M. C. et al. SARS-CoV-2 productively infects primary human immune system cells in vitro and in COVID-19 patients. J. Mol. Cell. Biol. ;14(4). (2022).

Ruetalo, N. et al. Antibody response against SARS-CoV-2 and seasonal coronaviruses in nonhospitalized COVID-19 patients. mSphere 6(1). (2021).