Bloch, M.E. and J.G. Schneider. M.E. Blochii, Systema ichthyologiae iconibus CX illustratum. Vol. [Atlas]. Berolini: Sumtibus auctoris impressum et Bibliopolio Sanderiano commissum. (Bavarian State Library, 1801).

Nielsen, J. et al. Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353, 702 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Nielsen, J., Hedeholm, R. B., Simon, M. & Steffensen, J. F. Distribution and feeding ecology of the Greenland shark (Somniosus microcephalus) in Greenland waters. Polar Biol. 37, 37–46 (2014).

Article 

Google Scholar
 

Mecklenburg, C. et al. Marine Fishes of the Arctic Region. Conservation of Arctic Flora and Fauna. Vol. 1. Akureyri, Iceland. (2018).

MacNeil, M. A. et al. Biology of the Greenland shark Somniosus microcephalus. J. Fish. Biol. 80, 991–1018 (2012).

Article 
PubMed 

Google Scholar
 

Berland, B. Copepod Ommatokoita elongata (Grant) in the eyes of the Greenland Shark—a possible cause of mutual dependence. Nature 191, 829–830 (1961).

Article 
ADS 

Google Scholar
 

Kabata, Z. Parasitic Copepoda of British Fishes. (Ray Society, 1979).

Borucinska, J. D., Benz, G. W. & Whiteley, H. E. Ocular lesions associated with attachment of the parasitic copepod Ommatokoita elongata (Grant) to corneas of Greenland sharks, Somniosus microcephalus (Bloch & Schneider). J. Fish. Dis. 21, 415–422 (1998).

Article 

Google Scholar
 

Skomal, G. B. & Benz, G. W. Ultrasonic tracking of Greenland sharks, Somniosus microcephalus, under Arctic ice. Mar. Biol. 145, 489–498 (2004).

Article 

Google Scholar
 

Nielsen, J. et al. Greenland Shark (Somniosus microcephalus) stomach contents and stable isotope values reveal an ontogenetic dietary shift. Front. Mar. Sci. 6, 125 (2019).

Article 
ADS 

Google Scholar
 

Lamb, T. D. Why rods and cones? Eye 30, 179–85 (2016).

Article 
PubMed 

Google Scholar
 

Lamb, T. D. Evolution of phototransduction, vertebrate photoreceptors and retina. Prog. Retin. Eye Res. 36, 52–119 (2013).

Article 
PubMed 

Google Scholar
 

de Busserolles, F., Fogg, L., Cortesi, F. & Marshall, J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin. Cell Dev. Biol. 106, 20–30 (2020).

Article 
PubMed 

Google Scholar
 

Fogg, L. G. et al. Development of dim-light vision in the nocturnal reef fish family Holocentridae I: retinal gene expression. J. Exp. Biol. 225, jeb244513 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fogg, L. G. et al. Development of dim-light vision in the nocturnal reef fish family Holocentridae II: retinal morphology. J. Exp. Biol. 225, jeb244740 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fogg, L. G. et al. Deep-sea fish reveal alternative pathway for vertebrate visual development. bioRxiv: 2024.10.10.617579. https://doi.org/10.1101/2024.10.10.617579 (2024).

Cortesi, F. et al. Visual system diversity in coral reef fishes. Semin. Cell Develop. Biol. 106, 31–42 (2020).

Article 

Google Scholar
 

Lythgoe, J. N. The Ecology of Vision. (Clarendon Press, 1979).

Munz, F.W. and W.N. McFarland, Evolutionary Adaptations of Fishes to the Photic Environment, in The Visual System in Vertebrates. (Springer-Verlag, 1977).

Carleton, K. L., Dalton, B. E., Escobar-Camacho, D. & Nandamuri, S. P. Proximate and ultimate causes of variable visual sensitivities: Insights from cichlid fish radiations. Genesis 54, 299–325 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Carleton, K. L., Escobar-Camacho, D., Stieb, S. M., Cortesi, F. & Marshall, N. J. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J. Exp. Biol. 223, jeb193334 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Musilova, Z., Salzburger, W. & Cortesi, F. The visual opsin gene repertoires of teleost fishes: evolution, ecology, and function. Annu. Rev. Cell Develop. Biol. 37, 441–468 (2021).

Article 

Google Scholar
 

Hauzman, E. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors. Semin. Cell Develop. Biol. 106, 86–93 (2020).

Article 

Google Scholar
 

de Busserolles, F. & Marshall, N. J. Seeing in the deep-sea: visual adaptations in lanternfishes. Philos Trans R Soc Lond B Biol Sci. 372, https://doi.org/10.1098/rstb.2016.0070 (2017).

Delroisse, J., Duchatelet, L., Flammang, P. & Mallefet, J. De novo transcriptome analyses provide insights into opsin-based photoreception in the lanternshark Etmopterus spinax. PLoS One 13, e0209767 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Claes, J. M. et al. Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks. PloS one 9, e104213 (2014).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Denton, E. J. & Shaw, T. I. The visual pigments of some deep-sea elasmobranchs. J. Mar. Biol. Assoc. U.K. 43, 65–70 (1963).

Article 

Google Scholar
 

Newman, A. S., Marshall, J. N. & Collin, S. P. Visual eyes: a quantitative analysis of the photoreceptor layer in deep-sea sharks. Brain Behav. Evol. 82, 237–249 (2013).

Article 
PubMed 

Google Scholar
 

Hart, N. S. Vision in sharks and rays: opsin diversity and colour vision. Semin. Cell Develop. Biol. 106, 12–19 (2020).

Article 

Google Scholar
 

Policarpo, M. et al. Contrasting gene decay in subterranean vertebrates: insights from cavefishes and fossorial mammals. Mol. Biol. Evol. 38, 589–605 (2020).

Simon, N., Fujita, S., Porter, M. & Yoshizawa, M. Expression of extraocular opsin genes and light-dependent basal activity of blind cavefish. PeerJ 7, e8148 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Protas, M. & Jeffery, W. R. Evolution and development in cave animals: from fish to crustaceans. WIREs Develop. Biol. 1, 823–845 (2012).

Article 

Google Scholar
 

Stokesbury, M., Harvey-Clark, C., Hay Gallant, J., Block, B. & Myers, R. Movement and environmental preferences of Greenland sharks (Somniosus microcephalus) electronically tagged in the St. Lawrence Estuary, Canada. Mar. Biol. 148, 159–165 (2005).

Article 

Google Scholar
 

Edwards, J. E. et al. Advancing research for the management of long-lived species: a case study on the greenland shark. Front. Mar. Sci. 6, 87 (2019).

Yopak, K. E. et al. Comparative brain morphology of the greenland and pacific sleeper sharks and its functional implications. Sci. Rep. 9, 10022 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Bartas, M. et al. RNA analysis of the longest living vertebrate Greenland shark revealed an abundance of LINE-like elements in its transcriptome. Czech Polar Rep. 13, 17 (2024).

Peel, L. R., Collin, S. P. & Hart, N. S. Retinal topography and spectral sensitivity of the Port Jackson shark (Heterodontus portusjacksoni). J. Comp. Neurol. 528, 2831–2847 (2020).

Article 
PubMed 

Google Scholar
 

Schieber, N. L., Collin, S. P. & Hart, N. S. Comparative retinal anatomy in four species of elasmobranch. J. Morphol. 273, 423–440 (2012).

Article 
PubMed 

Google Scholar
 

Kumar, P. et al. Experimental oral iron administration: histological investigations and expressions of iron handling proteins in rat retina with aging. Toxicology 392, 22–31 (2017).

Article 
PubMed 

Google Scholar
 

Narasimhan, A. et al. The Ercc1(-/Δ) mouse model of XFE progeroid syndrome undergoes accelerated retinal degeneration. Aging Cell 15, e14419 (2024).

Nag, T. C., Maurya, M. & Roy, T. S. Age-related changes of the human retinal vessels: possible involvement of lipid peroxidation. Ann. Anat. 226, 35–47 (2019).

Article 
PubMed 

Google Scholar
 

Cho, N. C., Poulsen, G. L., Ver Hoeve, J. N. & Nork, T. M. Selective loss of S-cones in diabetic retinopathy. Arch. Ophthalmol. 118, 1393–400 (2000).

Article 
PubMed 

Google Scholar
 

Gao, H. & Hollyfield, J. G. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol. Vis. Sci. 33, 1–17 (1992).

PubMed 

Google Scholar
 

Curcio, C. A., Millican, C. L., Allen, K. A. & Kalina, R. E. Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol. Vis. Sci. 34, 3278–96 (1993).

PubMed 

Google Scholar
 

Curcio, C. A. & Drucker, D. N. Retinal ganglion cells in Alzheimer’s disease and aging. Ann. Neurol. 33, 248–257 (1993).

Article 
PubMed 

Google Scholar
 

Freed, J. et al. The elephant retina examined across a range of ages. bioRxiv: 2021.01.20.427452. https://doi.org/10.1101/2021.01.20.427452 (2021).

da Silva, R., Conde, D. A., Baudisch, A. & Colchero, F. Slow and negligible senescence among testudines challenges evolutionary theories of senescence. Science 376, 1466–1470 (2022).

Article 
ADS 
PubMed 

Google Scholar
 

Do, M. T. H. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104, 205–226 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Musilova, Z. et al. Vision using multiple distinct rod opsins in deep-sea fishes. Science 364, 588–592 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Lupše, N. et al. Visual gene expression reveals a cone-to-rod developmental progression in deep-sea fishes. Mol. Biol. Evol. 38, 5664–5677 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Bacchet, P., T. Zysman and Y. Lefevre. Guide des poissons de Tahiti et ses iles. 4th ed. (Tahiti, 2016).

Weigmann, S. Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. J. Fish. Biol. 88, 837–1037 (2016).

Article 
PubMed 

Google Scholar
 

Bianchi, G. et al. Field Guide to the Living Marine Resources of Namibia. FAO species identification guide for fishery purposes. (FAO, 1999).

Capapé, C. et al. Maturity, fecundity and occurrence of the smallspotted catshark Scyliorhinus canicula (Chondrichthyes: Scyliorhinidae) off the Languedocian coast (southern France, north-western Mediterranean). Vie et Milieu/Life & Environ. 58, 47–55 (2008).

Ito, N., Fujii, M., Nohara, K. & Tanaka, S. Scyliorhinus hachijoensis, a new species of catshark from the Izu Islands, Japan (Carcharhiniformes: Scyliorhinidae). Zootaxa 5092, 331–349 (2022).

Article 
PubMed 

Google Scholar
 

Hart, N. S. et al. Widespread and convergent evolution of cone monochromacy in galeomorph sharks. Mol. Biol. Evol. 42, https://doi.org/10.1093/molbev/msaf043 (2025).

Yamaguchi, K., Koyanagi, M. & Kuraku, S. Visual and nonvisual opsin genes of sharks and other nonosteichthyan vertebrates: Genomic exploration of underwater photoreception. J. Evol. Biol. 34, 968–976 (2021).

Article 
PubMed 

Google Scholar
 

Hart, N. S. et al. Visual opsin diversity in sharks and rays. Mol. Biol. Evol. 37, 811–827 (2019).

Article 

Google Scholar
 

Pan, D., Wang, Z., Chen, Y. & Cao, J. Melanopsin-mediated optical entrainment regulates circadian rhythms in vertebrates. Commun. Biol. 6, 1054 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).

Article 
ADS 
PubMed 

Google Scholar
 

Altimus, C. M. et al. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat. Neurosci. 13, 1107–1112 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fisk, A. T., Lydersen, C. & Kovacs, K. M. Archival pop-off tag tracking of Greenland sharks Somniosus microcephalus in the High Arctic waters of Svalbard, Norway. Mar. Ecol. Prog. Ser. 468, 255–265 (2012).

Article 
ADS 

Google Scholar
 

Telese, F., Gamliel, A., Skowronska-Krawczyk, D., Garcia-Bassets, I. & Rosenfeld, M. G. “Seq-ing” insights into the epigenetics of neuronal gene regulation. Neuron 77, 606–23 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Solovei, I. et al. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356–368 (2009).

Article 
PubMed 

Google Scholar
 

Chao, D. L. & Skowronska-Krawczyk, D. ELOVL2: Not just a biomarker of aging. Transl. Med. Aging 4, 78–80 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vidal-Vázquez, N. et al. A single-nucleus RNA sequencing atlas of the postnatal retina of the shark Scyliorhinus canicula. Sci. Data 12, 228 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lewandowski, D. et al. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog. Retin Eye Res 89, 101037 (2022).

Article 
PubMed 

Google Scholar
 

Agbaga, M.-P. et al. Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. J. Lipid Res. 59, 1586–1596 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sander, C. L. et al. Nano-scale resolution of native retinal rod disk membranes reveals differences in lipid composition. J Cell Biol. 220, https://doi.org/10.1083/jcb.202101063 (2021).

Winnikoff, J. R., Haddock, S. H. D. & Budin, I. Depth- and temperature-specific fatty acid adaptations in ctenophores from extreme habitats. J Exp Biol. 224, https://doi.org/10.1242/jeb.242800 (2021).

Dasyani, M. et al. Elovl2 is required for robust visual function in zebrafish. Cells 9, 2583 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gao, F. et al. Retinal polyunsaturated fatty acid supplementation reverses aging-related vision decline in mice. Sci. Transl. Med. 17, eads5769 (2025).

Article 
PubMed 

Google Scholar
 

Winnikoff, J. R. & Budin, I. Homeocurvature: a new dimension of membrane adaptation to extreme environments. Prog. Lipid Res. 100, 101355 (2025).

Article 
PubMed 

Google Scholar
 

Soja-Woźniak, M. et al. Loss of sea ice alters light spectra for aquatic photosynthesis. Nat. Commun. 16, 4059 (2025).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Firsanov, D. et al. Evidence for improved DNA repair in long-lived bowhead whale. Nature 648, 717–725 (2025).

Bardwell, A. J., Bardwell, L., Tomkinson, A. E. & Friedberg, E. C. Specific cleavage of model recombination and repair intermediates by the Yeast Rad1-Rad10 DNA endonuclease. Science 265, 2082–2085 (1994).

Article 
ADS 
PubMed 

Google Scholar
 

Davies, A. A., Friedberg, E. C., Tomkinson, A. E., Wood, R. D. & West, S. C. Role of the Rad1 and Rad10 proteins in nucleotide excision repair and recombination. J. Biol. Chem. 270, 24638–24641 (1995).

Article 
PubMed 

Google Scholar
 

Radford, S. J., Goley, E., Baxter, K., McMahan, S. & Sekelsky, J. Drosophila ERCC1 is required for a subset of MEI-9-dependent meiotic crossovers. Genetics 170, 1737–45 (2005).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Klein Douwel, D. et al. XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol. Cell 54, 460–71 (2014).

Article 
PubMed 

Google Scholar
 

Kikuchi, K. et al. Structure-specific endonucleases Xpf and Mus81 play overlapping but essential roles in DNA repair by homologous recombination. Cancer Res. 73, 4362–4371 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zaksauskaite, R., Thomas, R. C., van Eeden, F. & El-Khamisy, S. F. Tdp1 protects from topoisomerase 1–mediated chromosomal breaks in adult zebrafish but is dispensable during larval development. Sci. Adv. 7, eabc4165 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Cleaver, J. E., Lam, E. T. & Revet, I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat. Rev. Genet. 10, 756–768 (2009).

Article 
PubMed 

Google Scholar
 

Bishop, S., Francis, M., Duffy, C. & Montgomery, J. Age, growth, maturity, longevity and natural mortality of the shortfin mako shark (Isurus oxyrinchus) in New Zealand waters. Mar. Freshw. Res. 57, 143–154 (2006).

Article 

Google Scholar
 

Perry, C. T. et al. Comparing length-measurement methods and estimating growth parameters of free-swimming whale sharks (Rhincodon typus) near the South Ari Atoll, Maldives. Mar. Freshw. Res. 69, 1487–1495 (2018).

Article 

Google Scholar
 

Moreira, I. et al. Growth and maturity of the lesser-spotted dogfish (Linnaeus, 1758) in the southern Portuguese continental coast. J. Fish. Biol. 100, 315–319 (2022).

Article 
PubMed 

Google Scholar
 

Michael, S. W. Reef sharks and rays of the world. A guide to their identification, behaviour, and ecology. 2009/05/11 ed. Sea challengers. J. Mar. Biol. Assoc. UK 73, 99–102 (1993).

Chen, W., Chen, P., Liu, K.-M. & Wang, S.-B. Age and growth estimates of the Whitespotted Bamboo Shark, Chiloscyllium plagiosum, in the Northern Waters of Taiwan. Zool. Stud. 46, 92–102 (2007).


Google Scholar
 

Fahmi, W. et al. Age and growth of the tropical oviparous shark, Chiloscyllium punctatum in Indonesian waters. J. Fish. Biol. 99, 921–930 (2021).

Article 
PubMed 

Google Scholar
 

Cardiff, R. D., Miller, C. H. & Munn, R. J. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb. Protoc. 2014, 655–8 (2014).

Article 
PubMed 

Google Scholar
 

Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Simpson, J. T. et al. ABySS: a parallel assembler for short read sequence data. Genome Res. 19, 1117–23 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

Article 
PubMed 

Google Scholar
 

Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 5, 113 (2004).

Article 

Google Scholar
 

Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–3 (2009).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinforma. 19, 153 (2018).

Article 

Google Scholar
 

Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Mayeur, H. et al. The Sensory Shark: High-quality Morphological, Genomic and Transcriptomic Data for the Small-spotted Catshark Scyliorhinus Canicula Reveal the Molecular Bases of Sensory Organ Evolution in Jawed Vertebrates. Mol. Biol. Evol. 41, https://doi.org/10.1093/molbev/msae246 (2024).

Hara, Y. et al. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761–1771 (2018).

Article 
PubMed 

Google Scholar
 

Yamaguchi, K. et al. Elasmobranch genome sequencing reveals evolutionary trends of vertebrate karyotype organization. Genome Res 33, 1527–1540 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Stanhope, M. J. et al. Genomes of endangered great hammerhead and shortfin mako sharks reveal historic population declines and high levels of inbreeding in great hammerhead. iScience 26, 105815 (2023).

Article 
ADS 
PubMed 

Google Scholar
 

Zhang, Y. et al. The White-Spotted bamboo shark genome reveals chromosome rearrangements and fast-evolving immune genes of cartilaginous fish. iScience 23, 101754 (2020).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Kuznetsov, D. et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res. 51, D445–d451 (2023).

Article 
PubMed 

Google Scholar
 

Gabriel, L. et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sayers, E. W. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20–d26 (2022).

Article 
PubMed 

Google Scholar
 

Slater, G. S. C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinforma. 6, 31 (2005).

Article 

Google Scholar
 

Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Dainat, J. Another Gtf/Gff analysis toolkit (AGAT): resolve interoperability issues and accomplish more with your annotations. In Plant and Animal Genome XXIX Conference. (NBS, 2022).

Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–53 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pond, S. L. K., Frost, S. D. W. & Muse, S. V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2004).

Article 
PubMed 

Google Scholar
 

Xu, Q. et al. Stress induced aging in mouse eye. Aging Cell 21, e13737 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gao, F., Tom, E., Lieffrig, S. A., Finnemann, S. C. and Skowronska-Krawczyk, D. A novel quantification method for retinal pigment epithelium phagocytosis using a very-long-chain polyunsaturated fatty acids-based strategy. Front Mol Neurosci. 16, 1279457 (2023).

Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–7 (1959).

Article 
PubMed 

Google Scholar
 

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

Article 
PubMed 

Google Scholar
 

Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–9 (2015).

Article 
PubMed 

Google Scholar
 

R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2022).