Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

Article 
ADS 

Google Scholar
 

Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

Article 
ADS 

Google Scholar
 

Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

Article 
ADS 

Google Scholar
 

Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

Article 
ADS 

Google Scholar
 

Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

Article 
ADS 

Google Scholar
 

Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

Article 
ADS 

Google Scholar
 

Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

Article 
ADS 

Google Scholar
 

Polski, R. et al. Hierarchy of symmetry breaking correlated phases in twisted bilayer graphene. Preprint at https://arxiv.org/abs/2205.05225 (2022).

He, M. et al. Strongly interacting Hofstadter states in magic-angle twisted bilayer graphene. Nat. Phys. 21, 1380–1386 (2025).

Article 

Google Scholar
 

Liu, J. & Dai, X. Anomalous Hall effect, magneto-optical properties, and nonlinear optical properties of twisted graphene systems. npj Comput. Mater. 6, 57 (2020).

Article 
ADS 

Google Scholar
 

Liu, M., Liu, Z., Cao, J. & Wang, C. Properties of the optical response of the twisted bilayer graphene. Phys. B 675, 415609 (2024).

Article 

Google Scholar
 

Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

Article 
ADS 

Google Scholar
 

Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

Article 
ADS 

Google Scholar
 

Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

Article 
ADS 

Google Scholar
 

Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

Article 
ADS 

Google Scholar
 

Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

Article 

Google Scholar
 

Gierz, I. et al. Snapshots of non-equilibrium dirac carrier distributions in graphene. Nat. Mater. 12, 1119–1124 (2013).

Article 
ADS 

Google Scholar
 

Di Battista, G. et al. Revealing the thermal properties of superconducting magic-angle twisted bilayer graphene. Nano Lett. 22, 6465–6470 (2022).

Article 
ADS 

Google Scholar
 

Merino, R. L. et al. Interplay between light and heavy electron bands in magic-angle twisted bilayer graphene. Nat. Phys. 21, 1078–1084 (2025).

Article 

Google Scholar
 

Pershoguba, S. S. & Yakovenko, V. M. Optical control of topological memory based on orbital magnetization. Phys. Rev. B 105, 064423 (2022).

Article 
ADS 

Google Scholar
 

Yang, C., Esin, I., Lewandowski, C. & Refael, G. Optical control of slow topological electrons in moiré systems. Phys. Rev. Lett. 131, 026901 (2023).

Article 
ADS 

Google Scholar
 

Krishna Kumar, R. et al. Terahertz photocurrent probe of quantum geometry and interactions in magic-angle twisted bilayer graphene. Nat. Mater. 24, 1034–1041 (2025).

Article 
ADS 

Google Scholar
 

Lin, J.-X. et al. Spin-orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).

Article 
ADS 

Google Scholar
 

Trovatello, C. et al. Ultrafast hot carrier transfer in WS2/graphene large-area heterostructures. npj 2D Mater. Appl. 6, 24 (2022).

Stepanov, P. et al. Competing zero-field Chern insulators in superconducting twisted bilayer graphene. Phys. Rev. Lett. 127, 197701 (2021).

Article 
ADS 

Google Scholar
 

Tseng, C.-C. et al. Anomalous Hall effect at half filling in twisted bilayer graphene. Nat. Phys. 18, 1038–1042 (2022).

Article 

Google Scholar
 

Bhowmik, S. et al. Spin-orbit coupling-enhanced valley ordering of malleable bands in twisted bilayer graphene on WSe2. Nat. Commun. 14, 4055 (2023).

Xie, T. et al. Long-lived isospin excitations in magic-angle twisted bilayer graphene. Nature 633, 77–82 (2024).

Article 
ADS 

Google Scholar
 

Wagner, G., Kwan, Y. H., Bultinck, N., Simon, S. H. & Parameswaran, S. A. Global phase diagram of the normal state of twisted bilayer graphene. Phys. Rev. Lett. 128, 156401 (2022).

Article 
ADS 

Google Scholar
 

Breiø, C. N. & Andersen, B. M. Chern insulator phases and spontaneous spin and valley order in a moiré lattice model for magic-angle twisted bilayer graphene. Phys. Rev. B 107, 165114 (2023).

Article 
ADS 

Google Scholar
 

Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

Article 
ADS 

Google Scholar
 

Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

Article 
ADS 

Google Scholar
 

Gorchon, J., Yang, Y. & Bokor, J. Model for multishot all-thermal all-optical switching in ferromagnets. Phys. Rev. B 94, 020409 (2016).

Article 
ADS 

Google Scholar
 

Fernández-Rossier, J., Piermarocchi, C., Chen, P., MacDonald, A. H. & Sham, L. J. Coherently photoinduced ferromagnetism in diluted magnetic semiconductors. Phys. Rev. Lett. 93, 127201 (2004).

Article 
ADS 

Google Scholar
 

Tesarová, N. et al. Experimental observation of the optical spin–orbit torque. Nat. Photon. 7, 492–498 (2013).

Article 
ADS 

Google Scholar
 

Pitaevskii, L. P. Electric forces in a transparent dispersive medium.Sov. Phys. JETP 12, 1008–1013 (1961).

MathSciNet 

Google Scholar
 

van der Ziel, J. P., Pershan, P. S. & Malmstrom, L. D. Optically-induced magnetization resulting from the inverse Faraday effect. Phys. Rev. Lett. 15, 190–193 (1965).

Article 
ADS 

Google Scholar
 

Pershan, P. S., van der Ziel, J. P. & Malmstrom, L. D. Theoretical discussion of the inverse Faraday effect, Raman scattering, and related phenomena. Phys. Rev. 143, 574–583 (1966).

Article 
ADS 

Google Scholar
 

Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

Article 
ADS 

Google Scholar
 

Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

Article 
ADS 

Google Scholar
 

Zhang, P. et al. All-optical switching of magnetization in atomically thin CrI3. Nat. Mater. 21, 1373–1378 (2022).

Article 
ADS 

Google Scholar
 

Xie, T. et al. High-efficiency optical training of itinerant two-dimensional magnets. Nat. Phys. 21, 1118–1124 (2025).

Article 

Google Scholar
 

Ghosh, B. et al. Probing quantum geometry through optical conductivity and magnetic circular dichroism. Sci. Adv. 10, eado1761 (2024).

Sharma, P. & Balatsky, A. V. Light-induced orbital magnetism in metals via inverse Faraday effect. Phys. Rev. B 110, 094302 (2024).

Article 
ADS 

Google Scholar
 

Cheng, O. H.-C., Son, D. H. & Sheldon, M. Light-induced magnetism in plasmonic gold nanoparticles. Nat. Photon. 14, 365–368 (2020).

Article 
ADS 

Google Scholar
 

Ortiz Jimenez, V. et al. Transition metal dichalcogenides: making atomic-level magnetism tunable with light at room temperature. Adv. Sci. 11, 2304792 (2024).

Article 

Google Scholar
 

Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 334–345 (1955).

Article 
ADS 

Google Scholar
 

Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. Electrodynamics of Continuous Media Vol. 8 (Pergamon Press, 1984).

Hertel, R. Theory of the inverse Faraday effect in metals. J. Magn. Magn. Mater. 303, L1–L4 (2006).

Article 
ADS 

Google Scholar
 

Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Science 372, 1323–1327 (2021).

Article 
ADS 

Google Scholar
 

Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nat. Phys. 18, 885–892 (2022).

Article 

Google Scholar
 

He, M. et al. Dynamically tunable moiré exciton Rydberg states in a monolayer semiconductor on twisted bilayer graphene. Nat. Mater. 23, 224–229 (2024).

Article 
ADS 

Google Scholar
 

You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).

Article 

Google Scholar
 

He, C. et al. Nonlinear optical response in graphene/WX2 (X = S, Se, and Te) van der Waals heterostructures. J. Phys. Chem. Lett. 10, 2090–2100 (2019).

Article 

Google Scholar
 

Kleiner, A., Hernangómez-Pérez, D. & Refaely-Abramson, S. Designable exciton mixing through layer alignment in WS2–graphene heterostructures. npj 2D Mater. Appl. 8, 36 (2024).

Stefani, F. D., Hoogenboom, J. P. & Barkai, E. Beyond quantum jumps: blinking nanoscale light emitters. Phys. Today 62, 34–39 (2009).

Article 

Google Scholar
 

Adhikari, S. et al. Magnetization switching of single magnetite nanoparticles monitored optically. Nano Lett. 24, 9861–9867 (2024).

Article 
ADS 

Google Scholar
 

Fisher, D. S. Scaling and critical slowing down in random-field Ising systems. Phys. Rev. Lett. 56, 416–419 (1986).

Article 
ADS 

Google Scholar
 

Bittel, H. Noise of ferromagnetic materials. IEEE Trans. Magn. 5, 359–365 (1969).

Article 
ADS 

Google Scholar
 

Bonetti, J. A., Caplan, D. S., Van Harlingen, D. J. & Weissman, M. B. Electronic transport in underdoped YBa2Cu3O7−δ nanowires: evidence for fluctuating domain structures. Phys. Rev. Lett. 93, 087002 (2004).

Article 
ADS 

Google Scholar
 

Carlson, E. W., Dahmen, K. A., Fradkin, E. & Kivelson, S. A. Hysteresis and noise from electronic nematicity in high-temperature superconductors. Phys. Rev. Lett. 96, 097003 (2006).

Article 
ADS 

Google Scholar
 

Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).

Article 
ADS 

Google Scholar
 

Deng, B. et al. Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photon. 14, 549–553 (2020).

Article 
ADS 

Google Scholar
 

Di Battista, G. et al. Infrared single-photon detection with superconducting magic-angle twisted bilayer graphene. Sci. Adv. 10, eadp3725 (2024).

Li, Y. & Koshino, M. Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 99, 075438 (2019).

Article 
ADS 

Google Scholar
 

Born, M. & Wolf, E. Principles of Optics (Cambridge Univ. Press, 1999).