Protected Planet Report 2020 (UNEP-WCMC and IUCN, 2021).

Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).

Article 
PubMed 

Google Scholar
 

Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

Article 
PubMed 

Google Scholar
 

Allan, J. R. et al. The minimum land area requiring conservation attention to safeguard biodiversity. Science 376, 1094–1101 (2022).

Article 
PubMed 

Google Scholar
 

Li, G. et al. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nat. Commun. 13, 1628 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vijay, V. & Armsworth, P. R. Pervasive cropland in protected areas highlight trade-offs between conservation and food security. Proc. Natl Acad. Sci. USA 118, e2010121118 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wolf, C., Levi, T., Ripple, W. J., Zárrate-Charry, D. A. & Betts, M. G. A forest loss report card for the world’s protected areas. Nat. Ecol. Evol. 5, 520–529 (2021).

Article 
PubMed 

Google Scholar
 

Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

Article 
PubMed 

Google Scholar
 

Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

Article 
PubMed 

Google Scholar
 

Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).

Article 
PubMed 

Google Scholar
 

IPBES Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Version 1). Zenodo https://doi.org/10.5281/zenodo.6417333 (2019).

Montesino Pouzols, F. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

Article 
PubMed 

Google Scholar
 

Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

Article 
PubMed 

Google Scholar
 

Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

Article 

Google Scholar
 

Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

Article 
PubMed 

Google Scholar
 

Brodie, J. F. & Watson, J. E. M. Human responses to climate change will likely determine the fate of biodiversity. Proc. Natl Acad. Sci. USA 120, e2205512120 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

Article 

Google Scholar
 

Adams, V. M. et al. Multiple-use protected areas are critical to equitable and effective conservation. One Earth 6, 1173–1189 (2023).

Article 

Google Scholar
 

Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).

Article 
PubMed 

Google Scholar
 

CBD Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity 15/4. Kunming–Montreal Global Biodiversity Framework (Secretariat of the Convention on Biological Diversity, 2022); https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf

Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).

Article 
PubMed 

Google Scholar
 

Watson, J. E., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

Article 
PubMed 

Google Scholar
 

Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).

Article 
PubMed 

Google Scholar
 

Asamoah, E. F., Beaumont, L. J. & Maina, J. M. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Change 11, 1105–1110 (2021).

Article 

Google Scholar
 

Naughton-Treves, L. & Holland, M. B. Losing ground in protected areas? Science 364, 832–833 (2019).

Article 
PubMed 

Google Scholar
 

Adams, V. M., Pressey, R. L. & Álvarez-Romero, J. G. Using optimal land-use scenarios to assess trade-offs between conservation, development, and social values. PLoS ONE 11, e0158350 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Williams, B. A. et al. Minimising the loss of biodiversity and ecosystem services in an intact landscape under risk of rapid agricultural development. Environ. Res. Lett. 15, 014001 (2020).

Article 

Google Scholar
 

Williams, B. A. et al. Bringing the forest back: restoration priorities in Colombia. Divers. Distrib. 30, e13821 (2024).

Article 

Google Scholar
 

UN United Nations Decade on Ecosystem Restoration (2021–2030) (United Nations General Assembly, 2019).

Chan, S. et al. The global biodiversity framework needs a robust action agenda. Nat. Ecol. Evol. 7, 172–173 (2022).

Article 

Google Scholar
 

Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).

Article 
PubMed 

Google Scholar
 

Zhou, Z. & Chen, Y. STUrban: a novel spatial–temporal deep learning model to simulate long-term urban growth. Inf. Geogr. 1, 100004 (2025).


Google Scholar
 

Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).

Article 
PubMed 

Google Scholar
 

Evans, M. C. Deforestation in Australia: drivers, trends and policy responses. Pac. Conserv. Biol. 22, 130–150 (2016).

Article 

Google Scholar
 

Angelsen, A. Policies for reduced deforestation and their impact on agricultural production. Proc. Natl Acad. Sci. USA 107, 19639–19644 (2010).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Watson, J. E. M., Ellis, E. C., Pillay, R., Williams, B. A. & Venter, O. Mapping industrial influences on Earth’s ecology. Annu. Rev. Environ. Resour. 48, 289–317 (2023).

Article 

Google Scholar
 

Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Segan, D. B., Murray, K. A. & Watson, J. E. M. A global assessment of current and future biodiversity vulnerability to habitat loss–climate change interactions. Glob. Ecol. Conserv. 5, 12–21 (2016).


Google Scholar
 

UNEP-WCMC and IUCN Protected Planet: the World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2024); https://www.protectedplanet.net/en

Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114, 1601–1606 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Tseng, T.-H. et al. Protected areas unevenly contribute to terrestrial vertebrate habitat conservation in China. Commun. Earth Environ. 6, 313 (2025).

Article 

Google Scholar
 

Yang, H. et al. Effectiveness of China’s protected areas in reducing deforestation. Environ. Sci. Pollut. Res. Int. 26, 18651–18661 (2019).

Article 
PubMed 

Google Scholar
 

Ghosh-Harihar, M. et al. Protected areas and biodiversity conservation in India. Biol. Conserv. 237, 114–124 (2019).

Article 

Google Scholar
 

Reddy, C. S., Saranya, K. R. L., Jha, C. S., Dadhwal, V. K. & Murthy, Y. V. N. K. Earth observation data for habitat monitoring in protected areas of India. Remote Sens. Appl. Soc. Environ. 8, 114–125 (2017).


Google Scholar
 

Potapov, P. et al. The Global 2000–2020 Land Cover and Land Use Change Dataset derived from the Landsat Archive: first results. Front. Remote Sens. 3, 856903 (2022).

Article 

Google Scholar
 

Parente, L. et al. Annual 30-m maps of global grassland class and extent (2000–2022) based on spatiotemporal machine Learning. Sci. Data 11, 1303 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, X. et al. GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method. Earth Syst. Sci. Data 16, 1353–1381 (2024).

Article 

Google Scholar
 

Wang, T. & Sun, F. Global gridded GDP data set consistent with the shared socioeconomic pathways. Sci. Data 9, 221 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gao, J. & Pesaresi, M. Downscaling SSP-consistent global spatial urban land projections from 1/8-degree to 1-km resolution 2000–2100. Sci. Data 8, 281 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Swift, T. L. & Hannon, S. J. Critical thresholds associated with habitat loss: a review of the concepts, evidence, and applications. Biol. Rev. Camb. Philos. Soc. 85, 35–53 (2010).

Article 
PubMed 

Google Scholar
 

Yin, D., Leroux, S. J. & He, F. Methods and models for identifying thresholds of habitat loss. Ecography 40, 131–143 (2017).

Article 

Google Scholar
 

Johnson, C. J. Identifying ecological thresholds for regulating human activity: effective conservation or wishful thinking? Biol. Conserv. 168, 57–65 (2013).

Article 

Google Scholar
 

Wies, G., Nicasio Arzeta, S. & Martinez Ramos, M. Critical ecological thresholds for conservation of tropical rainforest in human modified landscapes. Biol. Conserv. 255, 109023 (2021).

Article 

Google Scholar
 

Liu, L., Zhang, X. & Zhao, T. GLC_FCS30D: the first global 30-m land-cover dynamic monitoring product with fine classification system from 1985 to 2022. Zenodo https://doi.org/10.5281/zenodo.8239305 (2023).

Wang, T. & Sun, F. Gross domestic product (GDP) downscaling: a global gridded dataset consistent with the Shared Socioeconomic Pathways. Zenodo https://doi.org/10.5281/zenodo.5880037 (2022).