Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).
Liu, W. et al. Dynamic material flow analysis of critical metals for lithium-ion battery system in China from 2000–2018. Resour. Conserv. Recycl. 164, 105122 (2021).
Song, J. et al. Material flow analysis on critical raw materials of lithium-ion batteries in China. J. Clean. Prod. 215, 570–581 (2019).
Dunn, J., Slattery, M., Kendall, A., Ambrose, H. & Shen, S. Circularity of lithium-ion battery materials in electric vehicles. Environ. Sci. Technol. 55, 5189–5198 (2021).
Zeng, A. et al. Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nat. Commun. 13, 1341 (2022).
Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E. & Heidrich, O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 4, 71–79 (2021).
Global EV outlook 2023. IEA https://www.iea.org/reports/global-ev-outlook-2023 (2023).
Chen, M. et al. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3, 2622–2646 (2019).
Mrozik, W., Rajaeifar, M. A., Heidrich, O. & Christensen, P. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 14, 6099–6121 (2021).
Machala, M. L. et al. Life cycle comparison of industrial-scale lithium-ion battery recycling and mining supply chains. Nat. Commun. 16, 988 (2025).
Rezaei, M. et al. Advancing the circular economy by driving sustainable urban mining of end-of-life batteries and technological advancements. Energy Storage Mater. 75, 104035 (2025).
Ma, X. et al. The evolution of lithium-ion battery recycling. Nat. Rev. Clean. Technol. 1, 75–94 (2025).
Kim, S. et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling. J. Clean. Prod. 294, 126329 (2021).
Yu, D., Huang, Z., Makuza, B., Guo, X. & Tian, Q. Pretreatment options for the recycling of spent lithium-ion batteries: a comprehensive review. Min. Eng. 173, 107218 (2021).
Zhang, J. in Nano Technology for Battery Recycling, Remanufacturing, and Reusing (eds Farhad, S. et al.) 183–216 (Elsevier, 2022).
Zhang, B. et al. Direct regeneration of cathode materials in spent lithium-ion batteries toward closed-loop recycling and sustainability. J. Power Sources 589, 233728 (2024).
Li, L., Li, Y. & Zhang, G. Summary of pretreatment of waste lithium-ion batteries and recycling of valuable metal materials: a review. Separations 11, 196 (2024).
Zhong, X. et al. Pretreatment for the recovery of spent lithium ion batteries: theoretical and practical aspects. J. Clean. Prod. 263, 121439 (2020).
Ni, Y., Nie, C. -C, Shi, S. -X & Zhu, X. -N Effect of mechanical force on dissociation characteristics of cathode materials in spent lithium-ion batteries. Proc. Saf. Environ. Prot. 161, 374–383 (2022).
Ali, H., Khan, H. A. & Pecht, M. Preprocessing of spent lithium-ion batteries for recycling: need, methods, and trends. Renew. Sustain. Energy Rev. 168, 112809 (2022).
Sommerville, R. et al. A qualitative assessment of lithium ion battery recycling processes. Resour. Conserv. Recycl. 165, 105219 (2021).
Zhang, G. et al. A sustainable process for the recovery of anode and cathode materials derived from spent lithium-ion batteries. Sustainability 11, 2363 (2019).
Sojka, R., Pan, Q. & Billmann, L. Comparative Study of Li-ion Battery Recycling Processes (Accurec, 2020); https://accurec.de/wp-content/uploads/2021/04/Accurec-Comparative-study.pdf
He, L.-P., Sun, S.-Y., Song, X.-F. & Yu, J.-G. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Manag. 46, 523–528 (2015).
Li, P. et al. Green and non-destructive separation of cathode materials from aluminum foil in spent lithium-ion batteries. Sep. Purif. Technol. 338, 126625 (2024).
Xu, Z., Zhiyuan, L., Wenjun, M. & Qinxin, Z. Pretreatment options for the recycling of spent lithium-ion batteries: a comprehensive review. J. Energy Storage 72, 108691 (2023).
Tran, M. K., Rodrigues, M.-T. F., Kato, K., Babu, G. & Ajayan, P. M. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat. Energy 4, 339–345 (2019).
Quan, J. et al. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies. Sci. Total Environ. 819, 153105 (2022).
Liu, W., Liu, H., Liu, W. & Cui, Z. Life cycle assessment of power batteries used in electric bicycles in China. Renew. Sustain. Energy Rev. 139, 110596 (2021).
Mohr, M., Peters, J. F., Baumann, M. & Weil, M. Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. J. Indust. Ecol. 24, 1310–1322 (2020).
Rinne, M., Elomaa, H., Porvali, A. & Lundström, M. Simulation-based life cycle assessment for hydrometallurgical recycling of mixed LIB and NiMH waste. Resour. Conserv. Recycl. 170, 105586 (2021).
Du, S. et al. Life cycle assessment of recycled NiCoMn ternary cathode materials prepared by hydrometallurgical technology for power batteries in China. J. Clean. Prod. 340, 130798 (2022).
Ciez, R. E. & Whitacre, J. F. Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2, 148–156 (2019).
Yu, M., Bai, B., Xiong, S. & Liao, X. Evaluating environmental impacts and economic performance of remanufacturing electric vehicle lithium-ion batteries. J. Clean. Prod. 321, 128935 (2021).
Chen, Q. et al. Evaluating environmental impacts of different hydrometallurgical recycling technologies of the retired nickel-manganese-cobalt batteries from electric vehicles in China. Sep. Purif. Technol. 311, 123277 (2023).
Chen, Q. et al. Comparative environmental impacts of different hydrometallurgical recycling and remanufacturing technologies of lithium-ion batteries considering multi-recycling-approach and temporal-geographical scenarios in China. Sep. Purif. Technol. 324, 124642 (2023).
Wang, Y. et al. Environmental impact assessment of second life and recycling for LiFePO4 power batteries in China. J. Environ. Manag. 314, 115083 (2022).
Jiang, S. et al. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China. Sci. Total Environ. 811, 152224 (2022).
Wu, F. et al. Environmental hotspots and greenhouse gas reduction potential for different lithium-ion battery recovery strategies. J. Clean. Prod. 339, 130697 (2022).
Wasesa, M. et al. Economic and environmental assessments of an integrated lithium-ion battery waste recycling supply chain: a hybrid simulation approach. J. Clean. Prod. 379, 134625 (2022).
Duarte Castro, F., Mehner, E., Cutaia, L. & Vaccari, M. Life cycle assessment of an innovative lithium-ion battery recycling route: a feasibility study. J. Clean. Prod. 368, 133130 (2022).
Tao, Y., Rahn, C. D., Archer, L. A. & You, F. Second life and recycling: energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Sci. Adv. 7, eabi7633 (2021).
Blömeke, S. et al. Material and energy flow analysis for environmental and economic impact assessment of industrial recycling routes for lithium-ion traction batteries. J. Clean. Prod. 377, 134344 (2022).
NMC 811 battery 2025–2033 overview: trends, dynamics, and growth opportunities. DiMarket https://www.datainsightsmarket.com/reports/nmc-811-battery-84930 (2025).
Fleischmann, J. et al. Battery 2030: Resilient, Sustainable, and Circular (McKinsey & Company, 2023).
Huijbregts, M. A. et al. ReCiPe 2016: A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization (National Institute for Public Health and the Environment, 2016); http://hdl.handle.net/10029/620793
Liu, B. et al. Refocusing on effectiveness over expansion in urban waste–energy–carbon development in China. Nat. Energy 10, 215–225 (2025).
Regulation (EU) 2023/1542 of the European Parliament and of the Council of 12 July 2023 concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC (EUR-Lex, 2023); https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023R1542
Lander, L. et al. Financial viability of electric vehicle lithium-ion battery recycling. iScience 24, 102787 (2021).
Aeppli, D., Hack, E. & Held, M. Aging behavior of LiFePO4-based battery cells at stack level: a second-life cycling study. J. Energy Storage 129, 117135 (2025).
Zhang, Y., Zhang, X., Zhu, P., Li, W. & Zhang, L. Defluorination and directional conversion to light fuel by lithium synergistic vacuum catalytic co-pyrolysis for electrolyte and polyvinylidene fluoride in spent lithium-ion batteries. J. Hazard. Mater. 460, 132445 (2023).
Wang, R., Bulati, A., Zhan, L. & Xu, Z. Complicated pollution characteristics (particulate matter, heavy metals, microplastics, VOCs) of spent lithium-ion battery recycling at an industrial level. Sci. Total Environ. 962, 178406 (2025).
van Zelm, R., Hennequin, T. & Huijbregts, M. A. J. Performing life cycle impact assessment with the midpoint and endpoint method ReCiPe. Nat. Protocols 20, 3400–3411 (2025).
Pudas, J. & Karjalainen, T. AkkuSer Oy—Mobile Phone and Battery Recycling Services (AkkuSer Oy, 2021); https://bei.jcu.cz/Bioeconomy%20folders/presentations/bio-based-economy/akkuser-oy-mobile-phone-and-battery-recycling-services
Environmental Impact Assessment Report for Fuzhou Fengcheng Environmental Protection Technology Co., Ltd.’s Comprehensive Cascade Utilization Project for 30,000 Tons per Year of Lithium-Ion Power Batteries (Fujian Minke Environmental Protection Technology Development Co., 2020); http://www.eiafans.com/thread-1275037-1-1.html
Recycling von Lithium-Ionen-Batterien—LithoRec II (Braunschweig, 2016); https://www.erneuerbar-mobil.de/sites/default/files/2017-01/Abschlussbericht_LithoRec_II_20170116.pdf
Diekmann, J. et al. Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes. J. Electrochem. Soc. 164, A6184 (2017).
Wang, H. et al. Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding. Waste Manag. 91, 89–98 (2019).
Battery Recycling Datasheet (Accurec, 2018); https://accurec.de/wp-content/uploads/2018/04/Li-ion-RE_2018.pdf
Wang, M. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) (Center for Transportation Research, Argonne National Laboratory, 2021).
Iturrondobeitia, M. et al. Environmental impact assessment of LiNi1/3Mn1/3Co1/3O2 hydrometallurgical cathode recycling from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 10, 9798–9810 (2022).