Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).

Article 
CAS 

Google Scholar
 

Liu, W. et al. Dynamic material flow analysis of critical metals for lithium-ion battery system in China from 2000–2018. Resour. Conserv. Recycl. 164, 105122 (2021).

Article 
CAS 

Google Scholar
 

Song, J. et al. Material flow analysis on critical raw materials of lithium-ion batteries in China. J. Clean. Prod. 215, 570–581 (2019).

Article 
CAS 

Google Scholar
 

Dunn, J., Slattery, M., Kendall, A., Ambrose, H. & Shen, S. Circularity of lithium-ion battery materials in electric vehicles. Environ. Sci. Technol. 55, 5189–5198 (2021).

Article 
CAS 

Google Scholar
 

Zeng, A. et al. Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nat. Commun. 13, 1341 (2022).

Article 
CAS 

Google Scholar
 

Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E. & Heidrich, O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 4, 71–79 (2021).

Article 

Google Scholar
 

Global EV outlook 2023. IEA https://www.iea.org/reports/global-ev-outlook-2023 (2023).

Chen, M. et al. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3, 2622–2646 (2019).

Article 
CAS 

Google Scholar
 

Mrozik, W., Rajaeifar, M. A., Heidrich, O. & Christensen, P. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 14, 6099–6121 (2021).

Article 
CAS 

Google Scholar
 

Machala, M. L. et al. Life cycle comparison of industrial-scale lithium-ion battery recycling and mining supply chains. Nat. Commun. 16, 988 (2025).

Article 
CAS 

Google Scholar
 

Rezaei, M. et al. Advancing the circular economy by driving sustainable urban mining of end-of-life batteries and technological advancements. Energy Storage Mater. 75, 104035 (2025).

Article 

Google Scholar
 

Ma, X. et al. The evolution of lithium-ion battery recycling. Nat. Rev. Clean. Technol. 1, 75–94 (2025).

Article 

Google Scholar
 

Kim, S. et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling. J. Clean. Prod. 294, 126329 (2021).

Article 
CAS 

Google Scholar
 

Yu, D., Huang, Z., Makuza, B., Guo, X. & Tian, Q. Pretreatment options for the recycling of spent lithium-ion batteries: a comprehensive review. Min. Eng. 173, 107218 (2021).

Article 
CAS 

Google Scholar
 

Zhang, J. in Nano Technology for Battery Recycling, Remanufacturing, and Reusing (eds Farhad, S. et al.) 183–216 (Elsevier, 2022).

Zhang, B. et al. Direct regeneration of cathode materials in spent lithium-ion batteries toward closed-loop recycling and sustainability. J. Power Sources 589, 233728 (2024).

Article 
CAS 

Google Scholar
 

Li, L., Li, Y. & Zhang, G. Summary of pretreatment of waste lithium-ion batteries and recycling of valuable metal materials: a review. Separations 11, 196 (2024).

Article 

Google Scholar
 

Zhong, X. et al. Pretreatment for the recovery of spent lithium ion batteries: theoretical and practical aspects. J. Clean. Prod. 263, 121439 (2020).

Article 
CAS 

Google Scholar
 

Ni, Y., Nie, C. -C, Shi, S. -X & Zhu, X. -N Effect of mechanical force on dissociation characteristics of cathode materials in spent lithium-ion batteries. Proc. Saf. Environ. Prot. 161, 374–383 (2022).

Article 
CAS 

Google Scholar
 

Ali, H., Khan, H. A. & Pecht, M. Preprocessing of spent lithium-ion batteries for recycling: need, methods, and trends. Renew. Sustain. Energy Rev. 168, 112809 (2022).

Article 
CAS 

Google Scholar
 

Sommerville, R. et al. A qualitative assessment of lithium ion battery recycling processes. Resour. Conserv. Recycl. 165, 105219 (2021).

Article 
CAS 

Google Scholar
 

Zhang, G. et al. A sustainable process for the recovery of anode and cathode materials derived from spent lithium-ion batteries. Sustainability 11, 2363 (2019).

Article 

Google Scholar
 

Sojka, R., Pan, Q. & Billmann, L. Comparative Study of Li-ion Battery Recycling Processes (Accurec, 2020); https://accurec.de/wp-content/uploads/2021/04/Accurec-Comparative-study.pdf

He, L.-P., Sun, S.-Y., Song, X.-F. & Yu, J.-G. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Manag. 46, 523–528 (2015).

Article 
CAS 

Google Scholar
 

Li, P. et al. Green and non-destructive separation of cathode materials from aluminum foil in spent lithium-ion batteries. Sep. Purif. Technol. 338, 126625 (2024).

Article 
CAS 

Google Scholar
 

Xu, Z., Zhiyuan, L., Wenjun, M. & Qinxin, Z. Pretreatment options for the recycling of spent lithium-ion batteries: a comprehensive review. J. Energy Storage 72, 108691 (2023).

Article 

Google Scholar
 

Tran, M. K., Rodrigues, M.-T. F., Kato, K., Babu, G. & Ajayan, P. M. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat. Energy 4, 339–345 (2019).

Article 
CAS 

Google Scholar
 

Quan, J. et al. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies. Sci. Total Environ. 819, 153105 (2022).

Article 
CAS 

Google Scholar
 

Liu, W., Liu, H., Liu, W. & Cui, Z. Life cycle assessment of power batteries used in electric bicycles in China. Renew. Sustain. Energy Rev. 139, 110596 (2021).

Article 
CAS 

Google Scholar
 

Mohr, M., Peters, J. F., Baumann, M. & Weil, M. Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. J. Indust. Ecol. 24, 1310–1322 (2020).

Article 
CAS 

Google Scholar
 

Rinne, M., Elomaa, H., Porvali, A. & Lundström, M. Simulation-based life cycle assessment for hydrometallurgical recycling of mixed LIB and NiMH waste. Resour. Conserv. Recycl. 170, 105586 (2021).

Article 
CAS 

Google Scholar
 

Du, S. et al. Life cycle assessment of recycled NiCoMn ternary cathode materials prepared by hydrometallurgical technology for power batteries in China. J. Clean. Prod. 340, 130798 (2022).

Article 
CAS 

Google Scholar
 

Ciez, R. E. & Whitacre, J. F. Examining different recycling processes for lithium-ion batteries. Nat. Sustain. 2, 148–156 (2019).

Article 

Google Scholar
 

Yu, M., Bai, B., Xiong, S. & Liao, X. Evaluating environmental impacts and economic performance of remanufacturing electric vehicle lithium-ion batteries. J. Clean. Prod. 321, 128935 (2021).

Article 
CAS 

Google Scholar
 

Chen, Q. et al. Evaluating environmental impacts of different hydrometallurgical recycling technologies of the retired nickel-manganese-cobalt batteries from electric vehicles in China. Sep. Purif. Technol. 311, 123277 (2023).

Article 
CAS 

Google Scholar
 

Chen, Q. et al. Comparative environmental impacts of different hydrometallurgical recycling and remanufacturing technologies of lithium-ion batteries considering multi-recycling-approach and temporal-geographical scenarios in China. Sep. Purif. Technol. 324, 124642 (2023).

Article 
CAS 

Google Scholar
 

Wang, Y. et al. Environmental impact assessment of second life and recycling for LiFePO4 power batteries in China. J. Environ. Manag. 314, 115083 (2022).

Article 
CAS 

Google Scholar
 

Jiang, S. et al. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China. Sci. Total Environ. 811, 152224 (2022).

Article 
CAS 

Google Scholar
 

Wu, F. et al. Environmental hotspots and greenhouse gas reduction potential for different lithium-ion battery recovery strategies. J. Clean. Prod. 339, 130697 (2022).

Article 
CAS 

Google Scholar
 

Wasesa, M. et al. Economic and environmental assessments of an integrated lithium-ion battery waste recycling supply chain: a hybrid simulation approach. J. Clean. Prod. 379, 134625 (2022).

Article 
CAS 

Google Scholar
 

Duarte Castro, F., Mehner, E., Cutaia, L. & Vaccari, M. Life cycle assessment of an innovative lithium-ion battery recycling route: a feasibility study. J. Clean. Prod. 368, 133130 (2022).

Article 
CAS 

Google Scholar
 

Tao, Y., Rahn, C. D., Archer, L. A. & You, F. Second life and recycling: energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Sci. Adv. 7, eabi7633 (2021).

Article 
CAS 

Google Scholar
 

Blömeke, S. et al. Material and energy flow analysis for environmental and economic impact assessment of industrial recycling routes for lithium-ion traction batteries. J. Clean. Prod. 377, 134344 (2022).

Article 

Google Scholar
 

NMC 811 battery 2025–2033 overview: trends, dynamics, and growth opportunities. DiMarket https://www.datainsightsmarket.com/reports/nmc-811-battery-84930 (2025).

Fleischmann, J. et al. Battery 2030: Resilient, Sustainable, and Circular (McKinsey & Company, 2023).

Huijbregts, M. A. et al. ReCiPe 2016: A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization (National Institute for Public Health and the Environment, 2016); http://hdl.handle.net/10029/620793

Liu, B. et al. Refocusing on effectiveness over expansion in urban waste–energy–carbon development in China. Nat. Energy 10, 215–225 (2025).


Google Scholar
 

Regulation (EU) 2023/1542 of the European Parliament and of the Council of 12 July 2023 concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC (EUR-Lex, 2023); https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023R1542

Lander, L. et al. Financial viability of electric vehicle lithium-ion battery recycling. iScience 24, 102787 (2021).

Article 

Google Scholar
 

Aeppli, D., Hack, E. & Held, M. Aging behavior of LiFePO4-based battery cells at stack level: a second-life cycling study. J. Energy Storage 129, 117135 (2025).

Article 

Google Scholar
 

Zhang, Y., Zhang, X., Zhu, P., Li, W. & Zhang, L. Defluorination and directional conversion to light fuel by lithium synergistic vacuum catalytic co-pyrolysis for electrolyte and polyvinylidene fluoride in spent lithium-ion batteries. J. Hazard. Mater. 460, 132445 (2023).

Article 
CAS 

Google Scholar
 

Wang, R., Bulati, A., Zhan, L. & Xu, Z. Complicated pollution characteristics (particulate matter, heavy metals, microplastics, VOCs) of spent lithium-ion battery recycling at an industrial level. Sci. Total Environ. 962, 178406 (2025).

Article 
CAS 

Google Scholar
 

van Zelm, R., Hennequin, T. & Huijbregts, M. A. J. Performing life cycle impact assessment with the midpoint and endpoint method ReCiPe. Nat. Protocols 20, 3400–3411 (2025).

Pudas, J. & Karjalainen, T. AkkuSer Oy—Mobile Phone and Battery Recycling Services (AkkuSer Oy, 2021); https://bei.jcu.cz/Bioeconomy%20folders/presentations/bio-based-economy/akkuser-oy-mobile-phone-and-battery-recycling-services

Environmental Impact Assessment Report for Fuzhou Fengcheng Environmental Protection Technology Co., Ltd.’s Comprehensive Cascade Utilization Project for 30,000 Tons per Year of Lithium-Ion Power Batteries (Fujian Minke Environmental Protection Technology Development Co., 2020); http://www.eiafans.com/thread-1275037-1-1.html

Recycling von Lithium-Ionen-Batterien—LithoRec II (Braunschweig, 2016); https://www.erneuerbar-mobil.de/sites/default/files/2017-01/Abschlussbericht_LithoRec_II_20170116.pdf

Diekmann, J. et al. Ecological recycling of lithium-ion batteries from electric vehicles with focus on mechanical processes. J. Electrochem. Soc. 164, A6184 (2017).

Article 
CAS 

Google Scholar
 

Wang, H. et al. Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding. Waste Manag. 91, 89–98 (2019).

Article 
CAS 

Google Scholar
 

Battery Recycling Datasheet (Accurec, 2018); https://accurec.de/wp-content/uploads/2018/04/Li-ion-RE_2018.pdf

Wang, M. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) (Center for Transportation Research, Argonne National Laboratory, 2021).

Iturrondobeitia, M. et al. Environmental impact assessment of LiNi1/3Mn1/3Co1/3O2 hydrometallurgical cathode recycling from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 10, 9798–9810 (2022).

Article 
CAS 

Google Scholar