Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21:411–26.

PubMed 

Google Scholar
 

Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Jolles M, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum Reprod Update. 2023;29:157–76.

PubMed 

Google Scholar
 

Borumandnia N, Alavi Majd H, Khadembashi N, Alaii H. Worldwide trend analysis of primary and secondary infertility rates over past decades: A cross-sectional study. Int J Reprod Biomed. 2022;20:37–46.

PubMed 
PubMed Central 

Google Scholar
 

Aitken RJ. The Global Decline in Human Fertility: The Post-Transition Trap Hypothesis. Life (Basel). 2024;14:369.

CAS 
PubMed 

Google Scholar
 

Aitken RJ. What is driving the global decline of human fertility? Need for a multidisciplinary approach to the underlying mechanisms. Front Reprod Health . 2024 [cited 2025 Jun 25];6. Available from: https://www.frontiersin.org/journals/reproductive-health/articles/doi.org/10.3389/frph.2024.1364352/full

Bhattacharjee NV, Schumacher AE, Aali A, Abate YH, Abbasgholizadeh R, Abbasian M, et al. Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100: a comprehensive demographic analysis for the Global Burden of Disease Study 2021. The Lancet. 2024;403:2057–99.


Google Scholar
 

Fauser BCJM, Adamson GD, Boivin J, Chambers GM, de Geyter C, Dyer S, et al. Declining global fertility rates and the implications for family planning and family building: an IFFS consensus document based on a narrative review of the literature. Hum Reprod Update. 2024;30:153–73.

PubMed 
PubMed Central 

Google Scholar
 

Stigliani S, Moretti S, Anserini P, Casciano I, Venturini PL, Scaruffi P. Storage time does not modify the gene expression profile of cryopreserved human metaphase II oocytes. Hum Reprod. 2015;30:2519–26.

CAS 
PubMed 

Google Scholar
 

Cobo A, García-Velasco JA, Coello A, Domingo J, Pellicer A, Remohí J. Oocyte vitrification as an efficient option for elective fertility preservation. Fertil Steril. 2016;105:755-764.e8.

PubMed 

Google Scholar
 

Viotti M. Preimplantation Genetic Testing for Chromosomal Abnormalities: Aneuploidy, Mosaicism, and Structural Rearrangements. Genes (Basel). 2020;11:602.

CAS 
PubMed 

Google Scholar
 

Munné S, Kaplan B, Frattarelli JL, Child T, Nakhuda G, Shamma FN, et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil Steril. 2019;112:1071-1079.e7.

PubMed 

Google Scholar
 

Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell. 2015;161:459–69.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Adashi EY, Cohen IG. Heritable Human Genome Editing: The International Commission Report. JAMA. 2020;324:1941–2.

PubMed 

Google Scholar
 

Ma H, Marti-Gutierrez N, Park S-W, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548:413–9.

CAS 
PubMed 

Google Scholar
 

Sunkara SK, Rittenberg V, Raine-Fenning N, Bhattacharya S, Zamora J, Coomarasamy A. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod. 2011;26:1768–74.

PubMed 

Google Scholar
 

Practice Committee of the American Society for Reproductive Medicine. Electronic address: asrm@asrm.org, Practice Committee of the American Society for Reproductive Medicine. Testing and interpreting measures of ovarian reserve: a committee opinion. Fertil Steril. 2020;114:1151–7.

Kallen A, Polotsky AJ, Johnson J. Untapped Reserves: Controlling Primordial Follicle Growth Activation. Trends Mol Med. 2018;24:319–31.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev. 2023;103:2623–77.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Findlay JK, Hutt KJ, Hickey M, Anderson RA. How Is the Number of Primordial Follicles in the Ovarian Reserve Established?1. Biol Reprod. 2015;93(111):1–7.

CAS 

Google Scholar
 

McGee EA, Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev. 2000;21:200–14.

CAS 
PubMed 

Google Scholar
 

Nelson SM, Telfer EE, Anderson RA. The ageing ovary and uterus: new biological insights. Hum Reprod Update. 2013;19:67–83.

CAS 
PubMed 

Google Scholar
 

Armstrong DT. Environmental stress and ovarian function. Biol Reprod. 1986;34:29–39.

CAS 
PubMed 

Google Scholar
 

Silvestris E, de Pergola G, Rosania R, Loverro G. Obesity as disruptor of the female fertility. Reprod Biol Endocrinol. 2018;16:22.

PubMed 
PubMed Central 

Google Scholar
 

Silvestris E, Lovero D, Palmirotta R. Nutrition and Female Fertility: An Interdependent Correlation. Front Endocrinol (Lausanne). 2019;10:346.

PubMed 

Google Scholar
 

Richardson MC, Guo M, Fauser BCJM, Macklon NS. Environmental and developmental origins of ovarian reserve. Hum Reprod Update. 2014;20:353–69.

CAS 
PubMed 

Google Scholar
 

Best D, Avenell A, Bhattacharya S. How effective are weight-loss interventions for improving fertility in women and men who are overweight or obese? A systematic review and meta-analysis of the evidence. Hum Reprod Update. 2017;23:681–705.

PubMed 

Google Scholar
 

Gaskins AJ, Chavarro JE. Diet and fertility: a review. Am J Obstet Gynecol. 2018;218:379–89.

PubMed 

Google Scholar
 

Legro RS, Hansen KR, Diamond MP, Steiner AZ, Coutifaris C, Cedars MI, et al. Effects of preconception lifestyle intervention in infertile women with obesity: The FIT-PLESE randomized controlled trial. PLoS Med. 2022;19: e1003883.

PubMed 
PubMed Central 

Google Scholar
 

Mutsaerts MAQ, van Oers AM, Groen H, Burggraaff JM, Kuchenbecker WKH, Perquin DAM, et al. Randomized Trial of a Lifestyle Program in Obese Infertile Women. N Engl J Med. 2016;374:1942–53.

CAS 
PubMed 

Google Scholar
 

Carson SA, Kallen AN. Diagnosis and Management of Infertility: A Review. JAMA. 2021;326:65–76.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hooper LV, Gordon JI. Commensal Host-Bacterial Relationships in the Gut. Science. 2001;292:1115–8.

CAS 
PubMed 

Google Scholar
 

Hooper LV, Midtvedt T, Gordon JI. How Host-Microbial Interactions Shape the Nutrient Environment of the Mammalian Intestine. Annu Rev Nutr. 2002;22:283–307.

CAS 
PubMed 

Google Scholar
 

Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14: e1002533.

PubMed 
PubMed Central 

Google Scholar
 

Bishai JD, Palm NW. Small Molecule Metabolites at the Host-Microbiota Interface. J Immunol. 2021;207:1725–33.

CAS 
PubMed 

Google Scholar
 

Donia MS, Fischbach MA. Small Molecules from the Human Microbiota. Science. 2015;349:1254766.

PubMed 
PubMed Central 

Google Scholar
 

Zierer J, Jackson MA, Kastenmüller G, Mangino M, Long T, Telenti A, et al. The fecal metabolome as a functional readout of the gut microbiome. Nat Genet. 2018;50:790–5.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

CAS 
PubMed 

Google Scholar
 

Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16:35–56.

CAS 
PubMed 

Google Scholar
 

Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165:1332–45.

CAS 
PubMed 

Google Scholar
 

Alexander M, Turnbaugh PJ. Deconstructing Mechanisms of Diet-Microbiome-Immune Interactions. Immunity. 2020;53:264–76.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–41.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014;146:1564–72.

CAS 
PubMed 

Google Scholar
 

Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13: e23.

PubMed 
PubMed Central 

Google Scholar
 

Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen Y, et al. High-Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity. Gastroenterology. 2009;137:1716-1724.e2.

CAS 
PubMed 

Google Scholar
 

Kim K-A, Gu W, Lee I-A, Joh E-H, Kim D-H. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE. 2012;7: e47713.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes. 2007;56:1761–72.

CAS 
PubMed 

Google Scholar
 

Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.

CAS 
PubMed 

Google Scholar
 

Dalby MJ, Ross AW, Walker AW, Morgan PJ. Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice. Cell Rep. 2017;21:1521–33.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535:56–64.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015;163:1079–94.

CAS 
PubMed 

Google Scholar
 

Wang J, Luo R, Zhao X, Xia D, Liu Y, Shen T, et al. Association between gut microbiota and primary ovarian insufficiency: a bidirectional two-sample Mendelian randomization study. Front Endocrinol. 2023 [cited 2025 Mar 18];14. Available from: hhttps://www.frontiersin.org/journals/endocrinology/articles/doi.org/10.3389/fendo.2023.1183219/full

Torres PJ, Siakowska M, Banaszewska B, Pawelczyk L, Duleba AJ, Kelley ST, et al. Gut Microbial Diversity in Women With Polycystic Ovary Syndrome Correlates With Hyperandrogenism. J Clin Endocrinol Metab. 2018;103:1502–11.

PubMed 
PubMed Central 

Google Scholar
 

Yurtdaş G, Akdevelioğlu Y. A New Approach to Polycystic Ovary Syndrome: The Gut Microbiota. J Am Coll Nutr. 2020;39:371–82.

PubMed 

Google Scholar
 

Fo X, Pei M, Liu P, Zhu F, Zhang Y, Mu X. Metagenomic analysis revealed the association between gut microbiota and different ovary responses to controlled ovarian stimulation. Sci Rep. 2024;14:14930.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ata B, Yildiz S, Turkgeldi E, Brocal VP, Dinleyici EC, Moya A, et al. The Endobiota Study: Comparison of Vaginal, Cervical and Gut Microbiota Between Women with Stage 3/4 Endometriosis and Healthy Controls. Sci Rep. 2019;9:2204.

PubMed 
PubMed Central 

Google Scholar
 

Nieto MR, Rus MJ, Areal-Quecuty V, Lubián-López DM, Simon-Soro A. Menopausal shift on women’s health and microbial niches. npj Womens Health. 2025;3:3.

Peters BA, Santoro N, Kaplan RC, Qi Q. Spotlight on the Gut Microbiome in Menopause: Current Insights. Int J Womens Health. 2022;14:1059–72.

PubMed 
PubMed Central 

Google Scholar
 

Patel N, Patel N, Pal S, Nathani N, Pandit R, Patel M, et al. Distinct gut and vaginal microbiota profile in women with recurrent implantation failure and unexplained infertility. BMC Women’s Health. 2022;22:113.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chopra C, Kumar V, Kumar M, Bhushan I. Role of vaginal microbiota in idiopathic infertility: a prospective study. Microbes Infect. 2024;26: 105308.

CAS 
PubMed 

Google Scholar
 

Koren O, Konnikova L, Brodin P, Mysorekar IU, Collado MC. The maternal gut microbiome in pregnancy: implications for the developing immune system. Nat Rev Gastroenterol Hepatol. 2024;21:35–45.

PubMed 

Google Scholar
 

Kim M, Benayoun BA. The microbiome: An emerging key player in aging and longevity. Translational Medicine of Aging. 2020;4:103–16.

PubMed 
PubMed Central 

Google Scholar
 

Qi X, Yun C, Pang Y, Qiao J. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes. 2021;13:1–21.

PubMed 

Google Scholar
 

Munyoki SK, Goff JP, Reshke A, Wilderoter E, Mafarachisi N, Kolobaric A, et al. The microbiota extends the reproductive lifespan by safeguarding the ovarian reserve. bioRxiv; 2024 [cited 2024 Dec 17]. p. 2024.09.13.612929. Available from: https://www.biorxiv.org/content/10.1101/2024.09.13.612929v1

Ju S, Kang ZY, Yang LY, Xia YJ, Guo YM, Li S, et al. Gut microbiota and ovarian diseases: a new therapeutic perspective. Journal of Ovarian Research. 2025;18:105.

PubMed 
PubMed Central 

Google Scholar
 

Feng Y, Zheng H, Yin C, Liang D, Zhang S, Chen J, et al. β-resorcylic acid released by Limosilactobacillus reuteri protects against cisplatin-induced ovarian toxicity and infertility. CR Med. 2024 [cited 2024 Sep 21];5. Available from: https://www.cell.com/cell-reports-medicine/abstract/S2666-3791(24)00399-9

Moreno I, Simon C. Deciphering the effect of reproductive tract microbiota on human reproduction. Reproductive Medicine and Biology. 2019;18:40–50.

PubMed 

Google Scholar
 

Kroon SJ, Ravel J, Huston WM. Cervicovaginal microbiota, women’s health, and reproductive outcomes. Fertil Steril. 2018;110:327–36.

PubMed 

Google Scholar
 

Schoenmakers S, Laven J. The vaginal microbiome as a tool to predict IVF success. Curr Opin Obstet Gynecol. 2020;32:169–78.

PubMed 

Google Scholar
 

Toson B, Simon C, Moreno I. The Endometrial Microbiome and Its Impact on Human Conception. Int J Mol Sci. 2022;23:485.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moosa Y, Kwon D, de Oliveira T, Wong EB. Determinants of Vaginal Microbiota Composition. Front Cell Infect Microbiol. 2020;10:467.

PubMed 
PubMed Central 

Google Scholar
 

Sanz Y, Cryan JF, Deschasaux-Tanguy M, Elinav E, Lambrecht R, Veiga P. The gut microbiome connects nutrition and human health. Nat Rev Gastroenterol Hepatol. 2025;22:534–55.

PubMed 

Google Scholar
 

Chen RY, Mostafa I, Hibberd MC, Das S, Lynn HM, Webber DM, et al. Melding microbiome and nutritional science with early child development. Nat Med. 2021;27:1503–6.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Spivak I, Fluhr L, Elinav E. Local and systemic effects of microbiome-derived metabolites. EMBO Rep. 2022;23: e55664.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013;11:639–47.

CAS 
PubMed 

Google Scholar
 

Lynn DJ, Benson SC, Lynn MA, Pulendran B. Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nat Rev Immunol. 2022;22:33–46.

CAS 
PubMed 

Google Scholar
 

Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The Microbiota-Gut-Brain Axis. Physiol Rev. 2019;99:1877–2013.

CAS 
PubMed 

Google Scholar
 

Foster JA, McVey Neufeld K-A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36:305–12.

CAS 
PubMed 

Google Scholar
 

McGuinness AJ, Loughman A, Foster JA, Jacka F. Mood Disorders: The Gut Bacteriome and Beyond. Biol Psychiatry. 2024;95:319–28.

CAS 
PubMed 

Google Scholar
 

Schneider E, O’Riordan KJ, Clarke G, Cryan JF. Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis. Nat Metab. 2024;6:1454–78.

PubMed 

Google Scholar
 

Yu LW, Agirman G, Hsiao EY. The Gut Microbiome as a Regulator of the Neuroimmune Landscape. Annu Rev Immunol. 2022;40:143–67.

CAS 
PubMed 

Google Scholar
 

Elinav E, Garrett WS, Trinchieri G, Wargo J. The cancer microbiome. Nat Rev Cancer. 2019;19:371–6.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell. 2018;33:570–80.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Khan MdAW, Ologun G, Arora R, McQuade JL, Wargo JA. The gut microbiome modulates response to cancer immunotherapy. Dig Dis Sci. 2020;65:885–96.

Matson V, Chervin CS, Gajewski TF. Cancer and the Microbiome-Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology. 2021;160:600–13.

CAS 
PubMed 

Google Scholar
 

Shinoda M, Tamura H, Maejima K. Watarai S [Reproductive ability of germfree ICR female mice (author’s transl)]. Jikken Dobutsu. 1980;29:55–9.

CAS 
PubMed 

Google Scholar
 

Shimizu K, Muranaka Y, Fujimura R, Ishida H, Tazume S, Shimamura T. Normalization of reproductive function in germfree mice following bacterial contamination. Exp Anim. 1998;47:151–8.

CAS 
PubMed 

Google Scholar
 

Elgart M, Stern S, Salton O, Gnainsky Y, Heifetz Y, Soen Y. Impact of gut microbiota on the fly’s germ line. Nat Commun. 2016;7:11280.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gnainsky Y, Zfanya N, Elgart M, Omri E, Brandis A, Mehlman T, et al. Systemic Regulation of Host Energy and Oogenesis by Microbiome-Derived Mitochondrial Coenzymes. Cell Reports . 2021 [cited 2025 Jun 25];34. Available from: https://www.cell.com/cell-reports/abstract/S2211-1247(20)31572-2

Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci. 2010;107:20051–6.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Boulétreau M. Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci. 2001;98:6247–52.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota for development. Mol Ecol. 2014;23:2727–39.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cabreiro F, Gems D. Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Mol Med. 2013;5:1300–10.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci. 2017;114:4775–80.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zumkhawala-Cook A, Gallagher P, Raymann K. Diet affects reproductive development and microbiota composition in honey bees. Animal Microbiome. 2024;6:64.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4578–85.

CAS 
PubMed 

Google Scholar
 

Flores JN, Lubin J-B, Silverman MA. The case for microbial intervention at weaning. Gut Microbes. 2024;16:2414798.

PubMed 
PubMed Central 

Google Scholar
 

Al Nabhani Z, Eberl G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 2020;13:183–9.

CAS 
PubMed 

Google Scholar
 

Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S, Déjardin F, et al. A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the Adult. Immunity. 2019;50:1276-1288.e5.

CAS 
PubMed 

Google Scholar
 

Knoop KA, Gustafsson JK, McDonald KG, Kulkarni DH, Coughlin PE, McCrate S, et al. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci Immunol. 2017;2:eaao1314.

Lubin J-B, Green J, Maddux S, Denu L, Duranova T, Lanza M, et al. Arresting microbiome development limits immune system maturation and resistance to infection in mice. Cell Host Microbe. 2023;31:554-570.e7.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Metcalf CJE, Henry LP, Rebolleda-Gómez M, Koskella B. Why Evolve Reliance on the Microbiome for Timing of Ontogeny? mBio. 10:e01496–19.

Kim M, Wang J, Pilley SE, Lu RJ, Xu A, Kim Y, et al. Estropausal gut microbiota transplant improves measures of ovarian function in adult mice. bioRxiv. 2025;2024.05.03.592475.

Xu L, Zhang Q, Dou X, Wang Y, Wang J, Zhou Y, et al. Fecal microbiota transplantation from young donor mice improves ovarian function in aged mice. J Genet Genomics. 2022;49:1042–52.

CAS 
PubMed 

Google Scholar
 

Wu LL, Norman RJ, Robker RL. The impact of obesity on oocytes: evidence for lipotoxicity mechanisms. Reprod Fertil Dev. 2011;24:29–34.

CAS 
PubMed 

Google Scholar
 

Meulders B, Marei WFA, Loier L, Leroy JLMR. Lipotoxicity and Oocyte Quality in Mammals: Pathogenesis, Consequences, and Reversibility. Annual Review of Animal Biosciences. 2025;13:233–54.

CAS 
PubMed 

Google Scholar
 

Jašarević E, Hill EM, Kane PJ, Rutt L, Gyles T, Folts L, et al. The composition of human vaginal microbiota transferred at birth affects offspring health in a mouse model. Nat Commun. 2021;12:6289.

PubMed 
PubMed Central 

Google Scholar
 

Morrison KE, Jašarević E, Howard CD, Bale TL. It’s the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome. 2020;8:15.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kaye L, Sueldo C, Engmann L, Nulsen J, Benadiva C. Survey assessing obesity policies for assisted reproductive technology in the United States. Fertil Steril. 2016;105:703-706.e2.

PubMed 

Google Scholar
 

Pandey S, Maheshwari A, Bhattacharya S. Should access to fertility treatment be determined by female body mass index? Hum Reprod. 2010;25:815–20.

CAS 
PubMed 

Google Scholar
 

Broughton DE, Jungheim ES. A Focused Look at Obesity and the Preimplantation Trophoblast. Semin Reprod Med. 2016;34:5–10.

PubMed 

Google Scholar
 

Schon SB, Cabre HE, Redman LM. The impact of obesity on reproductive health and metabolism in reproductive-age females. Fertil Steril. 2024;122:194–203.

PubMed 
PubMed Central 

Google Scholar
 

Alemu BK, Wang CC, Li L, Zhu Z, Li Q, Wang Y. Effect of preconception antibiotics exposure on female reproductive health and pregnancy outcomes: a systematic review and meta-analysis. EClinicalMedicine. 2024;78: 102935.

PubMed 
PubMed Central 

Google Scholar
 

Dickinson BD, Altman RD, Nielsen NH, Sterling ML. Drug interactions between oral contraceptives and antibiotics. Obstet Gynecol. 2001;98:853–60.

CAS 
PubMed 

Google Scholar
 

Norwitz ER, Greenberg JA. Antibiotics in Pregnancy: Are They Safe? Rev Obstet Gynecol. 2009;2:135–6.

PubMed 
PubMed Central 

Google Scholar
 

Chasse AY, Bandyadka S, Wertheimer MC, Serizier SB, McCall K. Professional phagocytes are recruited for the clearance of obsolete nonprofessional phagocytes in the Drosophila ovary. Front Immunol. 2024;15:1389674.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ben Yaakov T, Wasserman T, Aknin E, Savir Y. Single-cell analysis of the aged ovarian immune system reveals a shift towards adaptive immunity and attenuated cell function. Hägg S, Harper DM, editors. eLife. 2023;12:e74915.

Chai C, Liang L, Mikkelsen NS, Wang W, Zhao W, Sun C, et al. Single-cell transcriptome analysis of epithelial, immune, and stromal signatures and interactions in human ovarian cancer. Commun Biol. 2024;7:131.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brodeur TY, Lanser TB, Salter L, Sessions K, Hogan T, Bonney EA, et al. Single cell analysis of ovarian immune cells during homeostasis and hormonal flux reveals dynamic changes in NK and B cell populations in the periovulatory phase. bioRxiv; 2025 [cited 2025 Jun 25]. p. 2025.04.18.649580. Available from: https://www.biorxiv.org/content/doi.org/10.1101/2025.04.18.649580v1

Garcia-Flores V, Romero R, Peyvandipour A, Galaz J, Pusod E, Panaitescu B, et al. A single-cell atlas of murine reproductive tissues during preterm labor. Cell Rep. 2023;42: 111846.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Isola JVV, Ocañas SR, Hubbart CR, Ko S, Mondal SA, Hense JD, et al. A single-cell atlas of the aging mouse ovary. Nat Aging. 2024;4:145–62.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jones ASK, Hannum DF, Machlin JH, Tan A, Ma Q, Ulrich ND, et al. Cellular atlas of the human ovary using morphologically guided spatial transcriptomics and single-cell sequencing. Science Advances. 2024;10:eadm7506.

Wagner M, Yoshihara M, Douagi I, Damdimopoulos A, Panula S, Petropoulos S, et al. Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat Commun. 2020;11:1147.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Winkler I, Tolkachov A, Lammers F, Lacour P, Daugelaite K, Schneider N, et al. The cycling and aging mouse female reproductive tract at single-cell resolution. Cell. 2024;187:981-998.e25.

CAS 
PubMed 

Google Scholar
 

Fan X, Bialecka M, Moustakas I, Lam E, Torrens-Juaneda V, Borggreven NV, et al. Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat Commun. 2019;10:3164.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang S, Zheng Y, Li J, Yu Y, Zhang W, Song M, et al. Single-Cell Transcriptomic Atlas of Primate Ovarian Aging. Cell. 2020;180:585-600.e19.

CAS 
PubMed 

Google Scholar
 

Bukovsky A, Caudle MR. REVIEW ARTICLE: Immune Physiology of the Mammalian Ovary – A Review. Am J Reprod Immunol. 2008;59:12–26.

PubMed 

Google Scholar
 

Robker RL, Wu LL, Yang X. Inflammatory pathways linking obesity and ovarian dysfunction. J Reprod Immunol. 2011;88:142–8.

CAS 
PubMed 

Google Scholar
 

Wu R, Van der Hoek KH, Ryan NK, Norman RJ, Robker RL. Macrophage contributions to ovarian function. Hum Reprod Update. 2004;10:119–33.

PubMed 

Google Scholar
 

Richards JS, Liu Z, Shimada M. Immune-like mechanisms in ovulation. Trends Endocrinol Metab. 2008;19:191–6.

CAS 
PubMed 

Google Scholar
 

Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev. 2018;40:369–416.

PubMed Central 

Google Scholar
 

Espey LL. Ovulation as an Inflammatory Reaction—A Hypothesis. Biol Reprod. 1980;22:73–106.

CAS 
PubMed 

Google Scholar
 

Zhang Z, Schlamp F, Huang L, Clark H, Brayboy L. Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction. 2020;159:325–37.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lliberos C, Liew SH, Mansell A, Hutt KJ. The Inflammasome Contributes to Depletion of the Ovarian Reserve During Aging in Mice. Front Cell Dev Biol. 2020;8: 628473.

PubMed 

Google Scholar
 

Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–98.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ivanov II, Frutos RDL, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, et al. Specific Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine. Cell Host Microbe. 2008;4:337–49.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41.

CAS 
PubMed 

Google Scholar
 

Narushima S, Sugiura Y, Oshima K, Atarashi K, Hattori M, Suematsu M, et al. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes. 2014;5:333–9.

PubMed 
PubMed Central 

Google Scholar
 

Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, Kirschning C, et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity. 2012;37:171–86.

CAS 
PubMed 

Google Scholar
 

Gury-BenAri M, Thaiss CA, Serafini N, Winter DR, Giladi A, Lara-Astiaso D, et al. The Spectrum and Regulatory Landscape of Intestinal Innate Lymphoid Cells Are Shaped by the Microbiome. Cell. 2016;166:1231-1246.e13.

CAS 
PubMed 

Google Scholar
 

Constantinides MG, Link VM, Tamoutounour S, Wong AC, Perez-Chaparro PJ, Han S-J, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science. 2019;366:eaax6624.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91–119.

CAS 
PubMed 

Google Scholar
 

Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278:11312–9.

CAS 
PubMed 

Google Scholar
 

Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–39.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133:2485S-2493S.

CAS 
PubMed 

Google Scholar
 

Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem. 2008;19:587–93.

CAS 
PubMed 

Google Scholar
 

Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrett-Wilt GA, Rabaglia ME, et al. Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Mol Cell. 2016;64:982–92.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fellows R, Varga-Weisz P. Chromatin dynamics and histone modifications in intestinal microbiota-host crosstalk. Molecular Metabolism. 2020;38: 100925.

CAS 
PubMed 

Google Scholar
 

Fellows R, Denizot J, Stellato C, Cuomo A, Jain P, Stoyanova E, et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat Commun. 2018;9:105.

PubMed 
PubMed Central 

Google Scholar
 

Gates LA, Reis BS, Lund PJ, Paul MR, Leboeuf M, Djomo AM, et al. Histone butyrylation in the mouse intestine is mediated by the microbiota and associated with regulation of gene expression. Nat Metab. 2024;6:697–707.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lund PJ, Gates LA, Leboeuf M, Smith SA, Chau L, Lopes M, et al. Stable isotope tracing in vivo reveals a metabolic bridge linking the microbiota to host histone acetylation. Cell Rep. 2022;41: 111809.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xiao X, Zhou Y, Li X, Jin J, Durham J, Ye Z, et al. 13C-Stable isotope resolved metabolomics uncovers dynamic biochemical landscape of gut microbiome-host organ communications in mice. Microbiome. 2024;12:90.

PubMed 
PubMed Central 

Google Scholar
 

Thomas SP, Denu JM. Short-chain fatty acids activate acetyltransferase p300. Shi X, Cole PA, Khochbin S, editors. eLife. 2021;10:e72171.

Ervin SM, Li H, Lim L, Roberts LR, Liang X, Mani S, et al. Gut microbial β-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens. J Biol Chem. 2019;294:18586–99.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med. 2012;10:253.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tetel MJ, de Vries GJ, Melcangi RC, Panzica G, O’Mahony SM. Steroids, stress and the gut microbiome-brain axis. J Neuroendocrinol. 2018;30.

Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas. 2017;103:45–53.

CAS 
PubMed 

Google Scholar
 

Patel J, Chaudhary H, Rajput K, Parekh B, Joshi R. Assessment of gut microbial β-glucuronidase and β-glucosidase activity in women with polycystic ovary syndrome. Sci Rep. 2023;13:11967.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

McCurry MD, D’Agostino GD, Walsh JT, Bisanz JE, Zalosnik I, Dong X, et al. Gut bacteria convert glucocorticoids into progestins in the presence of hydrogen gas. Cell. 2024;187:2952-2968.e13.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Doden H, Sallam LA, Devendran S, Ly L, Doden G, Daniel SL, et al. Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria. Appl Environ Microbiol. 2018;84:e00235-e318.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun. 2014;5:3611.

CAS 
PubMed 

Google Scholar
 

Qi X, Yun C, Sun L, Xia J, Wu Q, Wang Y, et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med. 2019;25:1225–33.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–7.

CAS 
PubMed 

Google Scholar
 

Ravel J, Brotman RM, Gajer P, Ma B, Nandy M, Fadrosh DW, et al. Daily temporal dynamics of vaginal microbiota before, during and after episodes of bacterial vaginosis. Microbiome. 2013;1:29.

PubMed 
PubMed Central 

Google Scholar
 

García-Velasco JA, Menabrito M, Catalán IB. What fertility specialists should know about the vaginal microbiome: a review. Reprod Biomed Online. 2017;35:103–12.

PubMed 

Google Scholar
 

Haahr T, Jensen JS, Thomsen L, Duus L, Rygaard K, Humaidan P. Abnormal vaginal microbiota may be associated with poor reproductive outcomes: a prospective study in IVF patients. Hum Reprod. 2016;31:795–803.

CAS 
PubMed 

Google Scholar
 

Koedooder R, Singer M, Schoenmakers S, Savelkoul PHM, Morré SA, de Jonge JD, et al. The vaginal microbiome as a predictor for outcome of in vitro fertilization with or without intracytoplasmic sperm injection: a prospective study. Hum Reprod. 2019;34:1042–54.

CAS 
PubMed 

Google Scholar
 

Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazán J, et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol. 2016;215:684–703.

PubMed 

Google Scholar
 

Bar O, Vagios S, Barkai O, Elshirbini J, Souter I, Xu J, et al. Harnessing vaginal inflammation and microbiome: a machine learning model for predicting IVF success. NPJ Biofilms Microbiomes. 2025;11:95.

PubMed 
PubMed Central 

Google Scholar
 

Moreno I, Garcia-Grau I, Perez-Villaroya D, Gonzalez-Monfort M, Bahçeci M, Barrionuevo MJ, et al. Endometrial microbiota composition is associated with reproductive outcome in infertile patients. Microbiome. 2022;10:1.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Maksimovic Celicanin M, Haahr T, Humaidan P, Skafte-Holm A. Vaginal dysbiosis – the association with reproductive outcomes in IVF patients: a systematic review and meta-analysis. Curr Opin Obstet Gynecol. 2024;36:155.

PubMed 
PubMed Central 

Google Scholar
 

Haahr T, Freiesleben NL, Jensen MB, Elbaek HO, Alsbjerg B, Laursen R. Efficacy of clindamycin and LACTIN-V for in vitro fertilization patients with vaginal dysbiosis: a randomised double-blind, placebo-controlled multicentre trial. Nature Communications. 2025;16:5166.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Argaw-Denboba A, Schmidt TSB, Di Giacomo M, Ranjan B, Devendran S, Mastrorilli E, et al. Paternal microbiome perturbations impact offspring fitness. Nature. 2024;629:652–9.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Harris JC, Trigg NA, Goshu B, Yokoyama Y, Dohnalová L, White EK, et al. The microbiota and T cells non-genetically modulate inherited phenotypes transgenerationally. Cell Reports . 2024 [cited 2025 Mar 18];43. Available from: https://www.cell.com/cell-reports/abstract/S2211-1247(24)00357-7

Trigg NA, Zhou SK, Harris JC, Lamonica MN, Nelson MA, Silverman MA, et al. A lack of commensal microbiota influences the male reproductive tract intergenerationally in mice. 2025 [cited 2025 Mar 18]; Available from: https://rep.bioscientifica.com/view/journals/rep/169/4/REP-24-0204.xml

Al-Asmakh M, Stukenborg J-B, Reda A, Anuar F, Strand M-L, Hedin L, et al. The Gut Microbiota and Developmental Programming of the Testis in Mice. PLoS ONE. 2014;9: e103809.

PubMed 
PubMed Central 

Google Scholar
 

Walter J, Armet AM, Finlay BB, Shanahan F. Establishing or Exaggerating Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated Rodents. Cell. 2020;180:221–32.

CAS 
PubMed 

Google Scholar
 

Schloss PD. Identifying and Overcoming Threats to Reproducibility, Replicability, Robustness, and Generalizability in Microbiome Research. mBio. 2018;9:e00525-18.

PubMed 
PubMed Central 

Google Scholar
 

Vonaesch P, Anderson M, Sansonetti PJ. Pathogens, microbiome and the host: emergence of the ecological Koch’s postulates. FEMS Microbiol Rev. 2018;42:273–92.

CAS 
PubMed 

Google Scholar
 

Neville BA, Forster SC, Lawley TD. Commensal Koch’s postulates: establishing causation in human microbiota research. Curr Opin Microbiol. 2018;42:47–52.

PubMed 

Google Scholar
 

Fischbach MA. Microbiome: Focus on causation and mechanism. Cell. 2018;174:785–90.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hill AB. The Environment and Disease: Association or Causation? Proc R Soc Med. 1965;58:295–300.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Evans AS. Causation and Disease: The Henle-Koch Postulates Revisited. Yale J Biol Med. 1976;49:175–95.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dewhirst FE, Chien CC, Paster BJ, Ericson RL, Orcutt RP, Schauer DB, et al. Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl Environ Microbiol. 1999;65:3287–92.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh H-J, Ring D, et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat Microbiol. 2016;2:16215.

CAS 
PubMed 

Google Scholar
 

Li F, Armet AM, Korpela K, Liu J, Quevedo RM, Asnicar F, et al. Cardiometabolic benefits of a non-industrialized-type diet are linked to gut microbiome modulation. Cell. 2025;188:1226-1247.e18.

CAS 
PubMed 

Google Scholar
 

Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev. 2001;59:129–39.

CAS 
PubMed 

Google Scholar
 

Thompson T, Dennis M, Higgins LA, Lee AR, Sharrett MK. Gluten-free diet survey: are Americans with coeliac disease consuming recommended amounts of fibre, iron, calcium and grain foods? J Hum Nutr Diet. 2005;18:163–9.

CAS 
PubMed 

Google Scholar
 

Miketinas DC, Bray GA, Beyl RA, Ryan DH, Sacks FM, Champagne CM. Fiber Intake Predicts Weight Loss and Dietary Adherence in Adults Consuming Calorie-Restricted Diets: The POUNDS Lost (Preventing Overweight Using Novel Dietary Strategies) Study. J Nutr. 2019;149:1742–8.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019;30:67-77.e3.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr. 2011;93:1062–72.

CAS 
PubMed 

Google Scholar
 

Suez J, Cohen Y, Valdés-Mas R, Mor U, Dori-Bachash M, Federici S, et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell. 2022;185:3307-3328.e19.

CAS 
PubMed 

Google Scholar
 

Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–6.

CAS 
PubMed 

Google Scholar
 

Why Calories Don’t Count: How we got the science of weight loss wrong – Dr Giles Yeo: 9781398704329 – AbeBooks. [cited 2025 Jul 16]. Available from: https://www.abebooks.com/9781398704329/Why-Calories-Count-got-science-1398704326/plp

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Roswall J, Olsson LM, Kovatcheva-Datchary P, Nilsson S, Tremaroli V, Simon M-C, et al. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe. 2021;29:765-776.e3.

CAS 
PubMed 

Google Scholar
 

Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562:583–8.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Korpela K, Kallio S, Salonen A, Hero M, Kukkonen AK, Miettinen PJ, et al. Gut microbiota develop towards an adult profile in a sex-specific manner during puberty. Sci Rep. 2021;11:23297.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Calcaterra V, Rossi V, Massini G, Regalbuto C, Hruby C, Panelli S, et al. Precocious puberty and microbiota: The role of the sex hormone–gut microbiome axis. Front Endocrinol. 2022 [cited 2025 Jul 16];13. Available from: https://www.frontiersin.org/journals/endocrinology/articles/doi.org/10.3389/fendo.2022.1000919/full

Carson MD, Westwater C, Novince CM. Adolescence and the Microbiome. Am J Pathol. 2023;193:1900–9.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod. 1986;1:81–7.

CAS 
PubMed 

Google Scholar
Â