Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2010).

Chandran, A. Biopharma foresees a ‘quantum advantage’: they could be right. Nat. Biotechnol. 42, 690–692 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Kissman, E. N. et al. Expanding chemistry through in vitro and in vivo biocatalysis. Nature 631, 37–48 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Buller, R. et al. From nature to industry: harnessing enzymes for biocatalysis. Science 382, eadh8615 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Schumacher, B. Quantum coding. Phys. Rev. A 51, 2738–2747 (1995).

Article 
PubMed 
CAS 

Google Scholar
 

Besedin, I. et al. Realizing lattice surgery on two distance–three repetition codes with superconducting qubits. Preprint at https://doi.org/10.48550/arXiv.2501.04612 (2025).

Matsunaga, H. & Ho, L. B. Detecting and protecting entanglement through nonlocality, variational entanglement witness and nonlocal measurements. Phys. Rev. Res. 7, 013239 (2025).

Article 
CAS 

Google Scholar
 

Kitaev, A. Y. Quantum measurements and the Abelian Stabilizer Problem. Preprint at https://doi.org/10.48550/arXiv.quant-ph/9511026 (1995).

Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

Article 

Google Scholar
 

Bogobowicz, M. et al. Quantum Technology Sees Record Investments, Progress on Talent Gap (McKinsey, 2023); https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/quantum-technology-sees-record-investments-progress-on-talent-gap

Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

Article 

Google Scholar
 

Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

Article 

Google Scholar
 

Babbush, R. et al. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).

Article 

Google Scholar
 

Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).

Article 
CAS 

Google Scholar
 

Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

Article 
PubMed 
CAS 

Google Scholar
 

Zhao, X.-H. et al. Leapfrogging Sycamore: harnessing 1432 GPUs for 7× faster quantum random circuit sampling. Natl Sci. Rev. 12, nwae317 (2025).

Article 
PubMed 

Google Scholar
 

Ball, P. Physicists in China challenge Google’s ‘quantum advantage’. Nature 588, 380 (2020).

Article 
PubMed 
CAS 

Google Scholar
 

Acharya, R. et al. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).

Article 

Google Scholar
 

King, A. D. et al. Beyond-classical computation in quantum simulation. Science 388, 199–204 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Pal, S., Bhattacharya, M., Lee, S.-S. & Chakraborty, C. Quantum computing in the next-generation computational biology landscape: from protein folding to molecular dynamics. Mol. Biotechnol. 66, 163–178 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Doga, H. et al. A perspective on protein structure prediction using quantum computers. J. Chem. Theory Comput. 20, 3359–3378 (2024).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Nałęcz-Charkiewicz, K., Charkiewicz, K. & Nowak, R. M. Quantum computing in bioinformatics: a systematic review mapping. Brief. Bioinform. 25, bbae391 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Liu, H. et al. Prospects of quantum computing for molecular sciences. Mater. Theory 6, 11 (2022).

Article 

Google Scholar
 

Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

Article 
PubMed 
CAS 

Google Scholar
 

Grimsley, G. R. et al. Increasing protein stability by altering long-range coulombic interactions. Protein Sci. 8, 1843–1849 (1999).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Robert, A., Barkoutsos, P. K., Woerner, S. & Tavernelli, I. Resource-efficient quantum algorithm for protein folding. npj Quantum Inf. 7, 38 (2021).

Article 

Google Scholar
 

Ettenhuber, P. et al. Calculating the energy profile of an enzymatic reaction on a quantum computer. J. Chem. Theory Comput. 21, 3493–3503 (2025).

Article 
PubMed 
CAS 

Google Scholar
 

Malone, F. D. et al. Towards the simulation of large scale protein–ligand interactions on NISQ-era quantum computers. Chem. Sci. 13, 3094–3108 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Aramyan, S., McGregor, K., Sandeep, S. & Haczku, A. SP-A binding to the SARS-CoV-2 spike protein using hybrid quantum and classical in silico modeling and molecular pruning by quantum approximate optimization algorithm (QAOA) based MaxCut with ZDOCK. Front. Immunol 13, 945317 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Pamidimukkala, J. V. et al. Protein structure prediction with high degrees of freedom in a gate-based quantum computer. J. Chem. Theory Comput. 20, 10223–10234 (2024).

Article 
PubMed 
CAS 

Google Scholar
 

Papalitsas, C. et al. Quantum approximate optimization algorithms for molecular docking. Preprint at https://doi.org/10.48550/arXiv.2503.04239 (2025).

Chagneau, A., Massaoudi, Y., Derbali, I. & Yahiaoui, L. Quantum algorithm for bioinformatics to compute the similarity between proteins. IET Quantum Commun. 5, 417–442 (2024).

Article 

Google Scholar
 

Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola, J. M. Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Fox, D. M., Branson, K. M. & Walker, R. C. mRNA codon optimization with quantum computers. PLoS ONE 16, e0259101 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Khatami, M. H., Mendes, U. C., Wiebe, N. & Kim, P. M. Gate-based quantum computing for protein design. PLoS Comput. Biol. 19, e1011033 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. Twenty-Eighth Annual ACM Symposium on Theory of Computing (ed. Miller, G. L.) 212–219 (Association for Computing Machinery, 1996); https://doi.org/10.1145/237814.237866

Allcock, J. et al. The prospects of Monte Carlo antibody loop modelling on a fault-tolerant quantum computer. Front. Drug Discov 2, 908870 (2022).

Article 

Google Scholar
 

McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C. & Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 92, 015003 (2020).

Article 
CAS 

Google Scholar
 

Ma, P., Chen, Y., Lu, H. & Zhong, W. Bisection Grover’s search algorithm and its application in analyzing CITE-seq data. J. Am. Stat. Assoc. 120, 52–63 (2024).

Article 

Google Scholar
 

Kundu, D. et al. Application of quantum tensor networks for protein classification. In Proc. Great Lakes Symposium on VLSI 2024 (eds Partin-Vaisband, I. et al.) 132–137 (Association for Computing Machinery, 2024); https://doi.org/10.1145/3649476.3658701

Ghazi Vakili, M. et al. Quantum-computing-enhanced algorithm unveils potential KRAS inhibitors. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02526-3 (2025).

Kouba, P. et al. Machine learning-guided protein engineering. ACS Catal. 13, 13863–13895 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Jayakumar, A. et al. Quantum algorithm implementations for beginners. ACM Trans. Quantum Comput 3, 18:1–18:92 (2022).


Google Scholar
 

Protein Engineering Portal (Loschmidt Laboratories); https://loschmidt.chemi.muni.cz/portal/

Marques, S. M. et al. Caver Web 2.0: analysis of tunnels and ligand transport in dynamic ensembles of proteins. Nucl. Acids Res. 53, W132–W142 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Hollingsworth, S. A. & Dror, R. O. Molecular dynamics simulation for all. Neuron 99, 1129–1143 (2018).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Gerlt, J. A. et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta Proteins Proteom. 1854, 1019–1037 (2015).

Article 
CAS 

Google Scholar
 

Hon, J. et al. EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities. Nucl. Acids Res. 48, W104–W109 (2020).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Hon, J. et al. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics 37, 23–28 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Planas-Iglesias, J. et al. AggreProt: a web server for predicting and engineering aggregation prone regions in proteins. Nucl. Acids Res. 52, W159–W169 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Vasina, M. et al. Advanced database mining of efficient haloalkane dehalogenases by sequence and structure bioinformatics and microfluidics. Chem. Catal. 2, 2704–2725 (2022).

CAS 

Google Scholar
 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

Article 
PubMed 
CAS 

Google Scholar
 

Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

Article 
PubMed 
CAS 

Google Scholar
 

Babbush, R. et al. Quantum simulation of exact electron dynamics can be more efficient than classical mean-field methods. Nat. Commun. 14, 4058 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Musil, M. et al. FireProtASR: a web server for fully automated ancestral sequence reconstruction. Brief. Bioinform. 22, bbaa337 (2021).

Article 
PubMed 

Google Scholar
 

Ross, C. M., Foley, G., Boden, M. & Gillam, E. M. J. in Enzyme Engineering: Methods and Protocols (eds Magnani, F. et al.) 85–110 (Springer, 2022); https://doi.org/10.1007/978-1-0716-1826-4_6

Onodera, W., Hara, N., Aoki, S., Asahi, T. & Sawamura, N. Phylogenetic tree reconstruction via graph cut presented using a quantum-inspired computer. Mol. Phylogenet. Evol. 178, 107636 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. N. J. Phys. 18, 023023 (2016).

Article 

Google Scholar
 

Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Vavra, O. et al. CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics 35, 4986–4993 (2019).

Article 
PubMed 
CAS 

Google Scholar
 

Horn, D. & Gottlieb, A. Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Phys. Rev. Lett. 88, 018702 (2001).

Article 
PubMed 

Google Scholar
 

Ollitrault, P. J., Miessen, A. & Tavernelli, I. Molecular quantum dynamics: a quantum computing perspective. Acc. Chem. Res. 54, 4229–4238 (2021).

Article 
PubMed 
CAS 

Google Scholar
 

Grimsley, H. R., Economou, S. E., Barnes, E. & Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10, 3007 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Sheng, X., Kazemi, M., Planas, F. & Himo, F. Modeling enzymatic enantioselectivity using quantum chemical methodology. ACS Catal. 10, 6430–6449 (2020).

Article 
CAS 

Google Scholar
 

Goings, J. J. et al. Reliably assessing the electronic structure of cytochrome P450 on today’s classical computers and tomorrow’s quantum computers. Proc. Natl Acad. Sci. USA 119, e2203533119 (2022).

Article 
PubMed 
PubMed Central 
CAS 

Google Scholar
 

Nguyen, T. D., Chen, Y.-I., Chen, L. H. & Yeh, H.-C. Recent advances in single-molecule tracking and imaging techniques. Annu. Rev. Anal. Chem. 16, 253–284 (2023).

Article 
CAS 

Google Scholar
 

Vasina, M. et al. In-depth analysis of biocatalysts by microfluidics: an emerging source of data for machine learning. Biotechnol. Adv. 66, 108171 (2023).

Article 
PubMed 
CAS 

Google Scholar
 

Rapp, J. T., Bremer, B. J. & Romero, P. A. Self-driving laboratories to autonomously navigate the protein fitness landscape. Nat. Chem. Eng. 1, 97–107 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cai, H. et al. Brain organoid reservoir computing for artificial intelligence. Nat. Electron. 6, 1032–1039 (2023).

Article 

Google Scholar
 

Lu, C. et al. The AI Scientist: towards fully automated open-ended scientific discovery. Preprint at https://doi.org/10.48550/arXiv.2408.06292 (2024).

Google Quantum AI; https://quantumai.google/

Quantum Roadmap; https://www.ibm.com/roadmaps/quantum/www.ibm.com/roadmaps/quantum