Lima LJR, Almeida MH, Nout MJR, Zwietering MH. Theobroma cacao L., the food of the gods: quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Crit Rev Food Sci Nutr. 2011;51:731–61.

CAS 
PubMed 

Google Scholar
 

Niemenak N, Cilas C, Rohsius C, Bleiholder H, Meier U, Lieberei R. Phenological growth stages of cacao plants (Theobroma sp.): codification and description according to the BBCH scale. Ann Appl Biol. 2010;156:13–24.


Google Scholar
 

Beg MS, Ahmad S, Jan K, Bashir K. Status, supply chain and processing of cocoa – a review. Trends Food Sci Technol. 2017;66:108–16.

CAS 

Google Scholar
 

Baruah IK, Shao J, Ali SS, Schmidt ME, Meinhardt LW, Bailey BA, et al. Cacao pod transcriptome profiling of seven genotypes identifies features associated with post-penetration resistance to Phytophthora palmivora. Sci Rep. 2024;14:4175.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chepsergon J, Moleleki LN. Rhizosphere bacterial interactions and impact on plant health. Curr Opin Microbiol. 2023;73: 102297.

CAS 
PubMed 

Google Scholar
 

Ploetz RC. Cacao diseases: important threats to chocolate production world wide. Phytopathology. 2007;97:1634–9.

PubMed 

Google Scholar
 

Madhu GS, Rani AT, Muralidhara BM, Rajendiran S, Venkataravanappa V, Sriram S. First report of Phytophthora tropicalis causing black pod of cacao (Theobroma cacao) in India. Australas Plant Pathol. 2023;52:591–3.


Google Scholar
 

Acebo-Guerrero Y, Hernández-Rodríguez A, Heydrich-Pérez M, El Jaziri M, Hernández-Lauzardo AN. Management of black pod rot in cacao (Theobroma Cacao L.): a review. Fruits. 2012;67:41–8.

CAS 

Google Scholar
 

Doungous O, Minyaka E, Longue EAM, Nkengafac NJ. Potentials of cocoa pod husk-based compost on phytophthora pod rot disease suppression, soil fertility, and Theobroma Cacao L. growth. Environ Sci Pollut Res. 2018;25:25327–35.

CAS 

Google Scholar
 

Miguelez-Sierra Y, Acebo-Guerrero Y, El Jaziri M, Bertin P, Hernández-Rodríguez A. Pseudomonas chlororaphis CP07 strain reduces disease severity caused by Phytophthora palmivora in genotypes of Theobroma cacao. Eur J Plant Pathol. 2019;155:1133–43.

CAS 

Google Scholar
 

Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas G, et al. Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One. 2014;9:e104259.

PubMed 
PubMed Central 

Google Scholar
 

Beneduzi A, Ambrosini A, Passaglia LMP. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol. 2012;35(4 suppl 1):1044–51.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hasan A, Tabassum B, Hashim M, Khan N. Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture :a Review. Bacteria. 2024:3(2):59–75. https://doi.org/10.3390/bacteria3020005.

Nagargade M, Tyagi V, Singh MK. Plant Growth-Promoting rhizobacteria: A biological approach toward the production of sustainable agriculture. In: Meena VS, editor. Role of rhizospheric microbes in soil. Singapore: Springer Singapore; 2018. pp. 205–23.


Google Scholar
 

Reddy PP. Potential role of PGPR in agriculture. Plant growth promoting rhizobacteria for horticultural crop protection. New Delhi: Springer India; 2014. pp. 17–34.


Google Scholar
 

Aarti S, Parmar S. Plant growth promoting rhizobacteria: their potential in sustainable agriculture. J Sci Innov Nat Earth. 2024;4:40–6.


Google Scholar
 

Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:541–56.

CAS 
PubMed 

Google Scholar
 

Widyanta Pratama S, Sukamto S, Nur Asyiah L, Vida Ervina Y. Growth Inhibition of cocoa pod rot fungus phytophthora palmivora by Pseudomonas fluorescence and Bacillus subtilis bacteria. Pelita Perkeb. 2013:29 (2):120–127. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v29i2.59.

Jibat M, Alo S. Integrated management of black pod (Phytophthora palmivora) disease of cocoa through fungicides and cultural practices in Southwestern Ethiopia. IJ-FANRES. 2023;4:43–5.


Google Scholar
 

McGREGOR AJ. A small-scale screening technique for evaluating fungicides against Phytophthora palmivora pod rot of cocoa. Ann Appl Biol. 1982;101:25–31.

CAS 

Google Scholar
 

Sowunmi FA, Famuyiwa GT, Oluyole KA, Aroyeun SO, Obasoro OA. Environmental burden of fungicide application among cocoa farmers in Ondo state, Nigeria. Sci Afr. 2019;6: e00207.


Google Scholar
 

De Souza JT, De Boer M, De Waard P, Van Beek TA, Raaijmakers JM. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol. 2003;69:7161–72.

PubMed 
PubMed Central 

Google Scholar
 

Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species — opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2:43–56.

CAS 
PubMed 

Google Scholar
 

Choudhary DK, Johri BN. Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). Microbiol Res. 2009;164:493–513.

CAS 
PubMed 

Google Scholar
 

Madhu GS, Rani AT, Muralidharan BM, Rajendiran S. A modified fungicide based media for the isolation of Phytophthora Cinnomomi rands. Causing avocado root rot. Pest Manage Hortic Ecosyst. 2023;23:302–3.


Google Scholar
 

Abad ZG, Burgess TI, Redford AJ, Bienapfl JC, Srivastava S, Mathew R, et al. IDphy: an international online resource for molecular and morphological identification of Phytophthora. Plant Dis. 2023;107:987–98.

CAS 
PubMed 

Google Scholar
 

Delgadillo-Durán P, Soto-Suárez M, Rodriguez-Polanco L, Carrero-Gutierrez M, Torres-Rojas E, Yockteng R. A new method for the inoculation of Phytophthora palmivora (Butler) into cacao seedlings under greenhouse conditions. Plant Methods. 2020;16: 114.

PubMed 
PubMed Central 

Google Scholar
 

Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–7.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bergey DH, Holt JG, Krieg NR, editors. Bergey’s manual of determinative bacteriology. 9th ed. Baltimore: Williams & Wilkins; 1994.


Google Scholar
 

Taylor WI, Achanzar D. Catalase test as an aid to the identification of Enterobacteriaceae. Appl Microbiol. 1972;24:58–61.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jurtshuk P, McQuitty DN. Use of a quantitative oxidase test for characterizing oxidative metabolism in bacteria. Appl Environ Microbiol. 1976;31:668–79.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kanlaya R, Subkod C, Thongboonkerd V. A novel, simple and rapid assay to measure citrate level in bacterial culture for analysis of citrate consumption by bacteria. Talanta Open. 2024;10:100360.


Google Scholar
 

Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol. 2002;68:3795–801.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kifle MH, Laing MD. Isolation and screening of bacteria for their diazotrophic potential and their influence on growth promotion of maize seedlings in greenhouses. Front Plant Sci. 2016;6:1225. https://doi.org/10.3389/fpls.2015.01225.

Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160:47–56.

CAS 
PubMed 

Google Scholar
 

Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–6.

CAS 

Google Scholar
 

O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011;30(47):2437. https://doi.org/10.3791/2437.

Wheeler BEJ. An introduction to plant diseases. Wiley and Sons, London. 1969;374.

Wilcoxson RD, Skovmand B, Atif AH. Evaluation of wheat cultivars for ability to retard development of stem rust. Ann Appl Biol. 1975;80:275–81.


Google Scholar
 

Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B. Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci. 2007;26:227–42.

CAS 

Google Scholar
 

Gerhardt KE, Huang X-D, Glick BR, Greenberg BM. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci. 2009;176:20–30.

CAS 

Google Scholar
 

Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28:1327–50.

CAS 
PubMed 

Google Scholar
 

Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, et al. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. 2013. https://doi.org/10.3389/fpls.2013.00356.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nepali B, Bhattarai S, Jiban S. Identification of Pseudomonas fluorescens using different biochemical tests. 2020. https://doi.org/10.13140/RG.2.2.23860.40328

Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ. Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev. 2006;70:510–47.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hallmann J, Berg G. Spectrum and population dynamics of bacterial root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN, editors. Microbial root endophytes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006. pp. 15–31.


Google Scholar
 

Zahid M, Abbasi MK, Hameed S, Rahim N. Isolation and identification of Indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea Mays L). Front Microbiol. 2015;6:207. https://doi.org/10.3389/fmicb.2015.00207.

Hardiansyah MY, Musa Y, Jaya AM. The effectiveness of giving plant PGPR rhizosphere bamboo on cocoa seeds germination at the nursery level. BIOMEDNATPROCH. 2021;10:1–5.


Google Scholar
 

Khadeejath Rajeela TH, Gopal M, Gupta A, Bhat R, Thomas GV. Cross-compatibility evaluation of plant growth promoting rhizobacteria of coconut and cocoa on yield and rhizosphere properties of vegetable crops. Biocatal Agric Biotechnol. 2017;9:67–73.


Google Scholar
 

Ferrás Negrín Y, Bustamante González CA, Ortíz Gómez N. RAC. 2022. https://doi.org/10.15517/rac.v46i1.49873. Pseudomona sp en la emergencia de semillas y el desarrollo de posturas de cacao.

Beck E, Ziegler P. Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol. 1989;40:95–117.

CAS 

Google Scholar
 

Carrillo A, Li C, Bashan Y. Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften. 2002;89:428–32.

CAS 
PubMed 

Google Scholar
 

Malik DK, Sindhu SS. Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of Chickpea (Cicer arietinum). Physiol Mol Biol Plants. 2011;17:25–32.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen B, Luo S, Wu Y, Ye J, Wang Q, Xu X, et al. The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of sedum Alfredii hance. Front Microbiol. 2017;8:2538.

PubMed 
PubMed Central 

Google Scholar
 

Suresh P, Vellasamy S, Ramamoorthy V. Implication of indole acetic acid and biofilm production by Pseudomonas fluorescens during tomato (Solanum lycopersicum) plant interactions. Biocatal Agric Biotechnol. 2025;65: 103554.

CAS 

Google Scholar
 

Alsultan W, Vadamalai G, Khairulmazmi A, Saud HM, Al-Sadi AM, Rashed O, et al. Isolation, identification and characterization of endophytic bacteria antagonistic to Phytophthora palmivora causing black pod of cocoa in Malaysia. Eur J Plant Pathol. 2019;155:1077–91.

CAS 

Google Scholar
 

Stephen L-K, Richard TA, Fredrick K. Biological control of black pod disease of cocoa (Theobroma Cacao L.) with Bacillus amyloliquefaciens, Aspergillus sp. and Penicillium sp. in vitro and in the field. J Microbiol Antimicrob. 2020;12:52–63.


Google Scholar
 

Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005;3:307–19.

CAS 
PubMed 

Google Scholar
 

Van Loon LC, Bakker PAHM, Pieterse CMJ. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol. 1998;36:453–83.

PubMed 

Google Scholar
 

Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol. 2014;52:347–75.

CAS 
PubMed 

Google Scholar
 

Kumar A, Kumar SPJ, Chintagunta AD, Agarwal DK, Pal G, Singh AN, et al. Biocontrol potential of Pseudomonas stutzeri endophyte from Withania somnifera (Ashwagandha) seed extract against pathogenic Fusarium oxysporum and Rhizoctonia Solani. Arch Phytopathol Plant Prot. 2022;55:1–18.

CAS 

Google Scholar
 

Research Institute for Biotechnology and Environment, University NL, City HCM, Vietnam, Tran VT, Nguyen HT, Nguyen HT, Le DD, Faculty of biological sciences, Nong lam university, Ho Chi Minh city, vietnam. Isolation and characteristics of Pseudomonas fluorescens to inhibit Phytophthora palmivora causing rot disease in Durian. J Agric Dev. 2023;22:31–8.


Google Scholar
 

Barahona E, Navazo A, Martínez-Granero F, Zea-Bonilla T, Pérez-Jiménez RM, Martín M, et al. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol. 2011;77:5412–9.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Vivekananthan R, Ravi M, Ramanathan A, Samiyappan R. Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthracnose pathogen in Mango. World J Microbiol Biotechnol. 2004;20:235–44.

CAS 

Google Scholar
Â